Κατάλογος Εκδηλώσεων

15
Σεπ

Παρουσίαση Διπλωματικής Εργασίας κ. Καρτάκη Αγγέλου - Σχολή ΗΜΜΥ
Κατηγορία: Παρουσίαση Διπλωματικής Εργασίας  
ΤοποθεσίαΗ παρουσίαση θα γίνει με τηλεδιάσκεψη
Ώρα15/09/2020 10:00 - 11:00

Περιγραφή:

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Πρόγραμμα Προπτυχιακών Σπουδών

ΠΑΡΟΥΣΙΑΣΗ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ

Καρτάκης Άγγελος

θέμα
Πρόβλεψη της Δυνατότητας Εμπορικής Αξιοποίησης Εφαρμογών του Google Play
Predicting the Marketability Potential of Google Play Apps

Εξεταστική Επιτροπή

Γεώργιος Γιαννακάκης, Αναπληρωτής Καθηγητής (επιβλέπων) 
Μιχαήλ Λαγουδάκης, Αναπληρωτής Καθηγητής
Αντώνιος Λιάπης, Λέκτορας (Πανεπιστήμιο Μάλτας)

Περίληψη
Τα τελευταία χρόνια παρατηρείται μεγάλη αύξηση ενδιαφέροντος γύρω από τον τομέα της ανάπτυξης εφαρμογών. Εφαρμογές χρήσιμες για να καλύπτουν ανάγκες διαφόρων πτυχών αναπτύσσονται συνεχώς, με άμεση συνέπεια την ανάπτυξη ηλεκτρονικών αγορών όπως το Google Play, αγορά αξίας 33 δισεκατομμυριων δολαρίων. Στην παρούσα διπλωματική εργασία προτείνουμε προσεγγίσεις για την πρόβλεψη της δυνατότητας εμπορικής αξιοποίησης εφαρμογών που αναπτύσσονται για την προαναφερθείσα πλατφόρμα. Χρησιμοποιούμε το πλαίσιο της μηχανικής μάθησης (machine learning), το οποίο προσφέρει καινοτόμες μεθόδους εκμάθησης για την δημιουργία προβλέψεων. Αξιοποιούνται οι ευρείας χρήσεως αλγόριθμοι Random Forest, Decision Tree, Multi-layer Perceptron, k-Nearest Neighbor, Logistic Regression και Support Vector Machines μέσω τεσσάρων διαφορετικών προσεγγίσεων μετατρέποντας το πρόβλημα της δυνατότητας πρόβλεψης εμπορικής δυναμικότητας σε πρόβλημα κατηγοριοποίησης (classification). Τα αποτελέσματα εξετάζονται και συγκρίνονται εφαρμόζοντας τεχνικές αξιολόγησης ως προς την απόδοση τους, επιτυγχάνοντας ως και 86% ακρίβεια. Θεωρούμε ότι η προτεινόμενη προσέγγιση συμβάλει στον βασικό της στόχο και θα μπορούσε να επεκταθεί στο μέλλον για προσαρμοστικές λύσεις σε περιπτώσεις πρόβλεψης εμπορικής δυναμικότητας, αξιοποιώντας ακόμα και την εναλλακτική προσέγγιση της μάθησης προτιμήσεων (preference learning).

Abstract 
In recent years there has been a great increase of interest around the field of smart phone application development growing to a $33B market. Applications that meet the various needs of customers are constantly evolving, leading to the development of online application marketplaces, such as Google Play. In this dissertation, we examine the key drivers of app user ratings and propose four approaches to predict the ability of applications to be valued highly by their users within the app market, i.e. marketability. To develop these approaches, we leverage the predictive capacity of Machine Learning algorithm by formalizing the marketability prediction problem as a classification problem. In particular, we test and compare six Machine Learning algorithms --- i.e. Random Forests, Decision Trees, Multi-layer Perceptrons, k-Nearest Neighbor, Logistic Regression and Support Vector Machines --- for their ability to predict the ratings of app users based on a set of app features: . By evaluating the algorithms against real data from Google play, we achieved up to 86% accuracy on marketability (I.e. user rating) prediction. The proposed solution can be extended to cover other domains, such as commercial capacity forecasting.
 

Meeting ID: 937 6397 7321
Password: 412181

© Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών 2014
Πολυτεχνείο Κρήτης