Κατάλογος Εκδηλώσεων

24
Φεβ

Παρουσίαση Διπλωματικής Εργασίας κ. Ανέστη Ευφροσύνης - Σχολή ΗΜΜΥ
Κατηγορία: Παρουσίαση Διπλωματικής Εργασίας  
ΤοποθεσίαΛ - Κτίριο Επιστημών/ΗΜΜΥ, 2041
Ώρα24/02/2020 15:00 - 16:00

Περιγραφή:

Θέμα
Πρόβλεψη Ελπιδοφόρων Βιολογικών Προσομοιώσεων στο εργαλείο PhysiBoSS
Forecasting Promising Biological Simulations at PhysiBoSS

Εξεταστική Επιτροπή
Αναπληρωτής Καθηγητής Δεληγιαννάκης Αντώνιος (επιβλέπων)
Αναπληρωτής Καθηγητής Λαγουδάκης Μιχαήλ
Αναπληρωτής Καθηγητής Σαμολαδάς Βασίλειος

Περίληψη
Το γεγονός ότι η ύπαρξη βιολογικών πολυκύτταρων συστημάτων χαρακτηρίζεται από υψηλή πολυπλοκότητα και ετερογένεια, σε συνδυασμό με τη σημαντική εξέλιξη της επιστήμης των υπολογιστών, οδήγησαν στην αυξημένη χρήση των in-silico μεθόδων, βασισμένων σε μαθηματικά μοντέλα. Συγκεκριμένα, είναι ιδιαίτερα χρήσιμα όταν πρόκειται να μιλήσουμε για ασθένειες με μη φυσιολογική και απρόβλεπτη απόκριση, όπως είναι ο καρκίνος ή τα αυτό-άνοσα νοσήματα. Η ανάγκη για την κατανόηση και θεραπεία τέτοιου είδους ασθενειών, οδήγησε στη δημιουργία διαφορετικών μοντελοποιημένων εργαλείων, τα οποία συνυπολογίζουν το ενδο- και εξω-κυτταρικό περιβάλλον, καθώς και την αλληλεπίδραση μεταξύ των κυττάρων.
Ένα τέτοιο παράδειγμα είναι το PhysiBoSS, το οποίο συνδυάζει δύο (2) άλλα ήδη σαφώς ορισμένα εργαλεία, για να υποστηρίξει την όλη λειτουργικότητά του και να παράξει τελικά, ένα μοντέλο απόφασης περί κυτταρικής μοίρας μέσω μίας ακριβής αναπαράστασης της μεταβολής του πληθυσμού των κυττάρων στο διάστημα του χρόνου, υπό ορισμένες συνθήκες και θεραπεία.
Λαμβάνοντας υπόψιν το γεγονός ότι δεν είναι ελπιδοφόρες όλες οι προσομοιώσεις του εργαλείου, προκειμένου να διευκολύνουμε τη διαδικασία της διαλογής και μελέτης των αποτελεσμάτων, οι κακές προσομοιώσεις πρέπει να εξαιρεθούν.
Επομένως, ο στόχος της παρούσας διπλωματικής είναι η σχεδίαση ενός παράλληλου και κατανεμημένου συστήματος, το οποίο εφαρμόζει έναν αλγόριθμο πρόβλεψης σε ένα μεγάλο πλήθος τρεχουσών προσομοιώσεων και αποφασίζει για τη συνέχιση ή όχι της εκτέλεσής της και τέλος ανιχνεύει και κρατά μόνο τις k πιο ελπιδοφόρες εκ του ομαδοποιημένου συνόλου προσομοιώσεων.
Κλείνοντας, η απόδοση του αλγορίθμου ελέγχθηκε τοπικά και απομακρυσμένα, επιφέροντας θετικά αποτελέσματα. 

Abstract
Since the existed biological multicellular systems are characterized by high complexity and heterogeneity, coupled with the fact that there has been a remarkable upsurge in computer science, in-silico methods based on mathematical models are in a great use. Specifically, they are particularly helpful when we must deal with diseases that have abnormal and unpredicted behavior, such as cancer or auto-immune ones. The need for understanding and curing such kind of diseases, led us to the integration of different modelling frameworks that take into account the intra- and the extracellular environment, as well as, the interplay between cells.
Such an example is PhysiBoSS, that combines two (2) other well-established frameworks to support its whole functionality and provide us a cell-fate decision model with an accurate representation of cells’ population variance through the time under a specific treatment and conditions.
Considering the fact that not all PhysiBoSS simulations are hopeful, to facilitate the procedure of results’ collection and examination, the bad simulations must be excluded.
So, this thesis’ goal is to design a distributed and parallel system that implements a forecasting algorithm on a great amount of real-time running simulations and decides about the sustainability or not of a simulation’s execution and finally maintains only the top k hopeful ones out of all the initial simulations.
Finally, the algorithm’s performance was locally and remotely checked, giving us optimistic results.

© Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών 2014
Πολυτεχνείο Κρήτης