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Machine Learning models are increasingly more employed to  
in the humanitarian sector to inform decision-making

Ensure fairness, transparency, and accountability in model  
development and deployment



Vulnerability refers to the susceptibility 
of individuals or groups to harm or adverse outcomes 
due to their specific characteristics, contexts, or 
lack of access to resources and opportunities.
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Biases may exist in every step of the pipeline



• Sampling & coverage







• Systematic missingness
• Sensitive-attribute handling
• Bias-aware preprocessing
• Harmonisation across silos







• Accuracy vs explainability
• Fairness constraints
• Robustness to imbalance







• Class imbalance & rare events
• Fairness–accuracy trade-off







• Sparse validation sets
• Overfitting to fairness metrics







• Intersectional fairness auditing
• External validity
• Counterfactual ground truth scarcity







• Transparency & contestability
• Sustainability & hand-off
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“For your own sanity, you have to remember that not all problems 
can be solved.  

Not all problems can be solved, but all problems can be 
illuminated.”  

Ursula Franklin



A Non-Governmental Organisation

aimed at providing 
educational/training 
opportunities

to young unemployed via AI

Beiró, M.G. and Kalimeri, K., 2022. Fairness in vulnerable attribute prediction on social media. Data Mining and Knowledge Discovery, 36(6), pp.2194-2213.

Accuracy versus Fairness 









Unemployment rate per Gender: 
Male: 5.5% 
Female: 9%
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We predict unemployment with 74% AUROC. Cool!  
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Biases can be indirect 

Models trained on biased data perpetuate or exacerbate inequalities



Quantitative Approaches



 = fairness-constrainable

 =  for bias

Which models are most appropriate when data are scarce, noisy or 
sensitive?



Quantitative Approaches



Pedro Saleiro, Benedict Kuester, Abby Stevens, Ari Anisfeld, Loren Hinkson, Jesse London, Rayid Ghani, Aequitas: A Bias and Fairness Audit Toolkit, 
arXiv preprint arXiv:1811.05577 (2018)







Impossible to satisfy more that one fairness metrics at once  
“Fairness and Machine Learning”, S. Barocas, M. Hardt, A. Narayanan, 2022, https://fairmlbook.org/ 



where Y and  �̂�  represent the real and predicted target values respectively 

(“1” represents the unemployed, “0” the employed)


Pragmatic Compromise - ’80% Rule’ - disparity threshold with respect to the reference group


Parity of Opportunity (FNR Parity)



with     at 0.5 to favour precision

Adaptive Threshold

Baeza-Yates R, Ribeiro-Neto B et al (1999) Modern Information Retrieval, vol 463. ACMPress, New York









Limitation: Multiple attributes lead to very sparse data points => identification 
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Belliardo, E., Kalimeri, K. and Mejova, Y., 2023, September. Leave no Place Behind: Improved Geolocation in Humanitarian 
Documents. In Proceedings of the 2023 ACM Conference on Information Technology for Social Good (pp. 31-39).

Can we automatically identify places in humanitarian reports?



15,661 documents from 45 emergencies from 33 countries

Belliardo, E., Kalimeri, K. and Mejova, Y., 2023, September. Leave no Place Behind: Improved Geolocation in Humanitarian 
Documents. In Proceedings of the 2023 ACM Conference on Information Technology for Social Good (pp. 31-39).
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geotagging 
the extraction of text fragments that may be a 
location (“toponyms”)
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geotagging 
the extraction of text fragments that may be a 
location (“toponyms”)

geocoding 

the disambiguation of the toponym 
to a specific geographic location

15,661 documents from 45 emergencies from 33 countries

Belliardo, E., Kalimeri, K. and Mejova, Y., 2023, September. Leave no Place Behind: Improved Geolocation in Humanitarian 
Documents. In Proceedings of the 2023 ACM Conference on Information Technology for Social Good (pp. 31-39).

Can we automatically identify places in humanitarian reports?
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Geotagging (finding toponyms in text)

• 469 English-language documents coded by DEEP annotators
• “Literal” vs. “associative” toponyms (as defined by Gritta et al.) 

• Literal: “latest events in central Syria” 
• Associative: “Syria Red Cross aided border regions”

• Total of 11,025 toponyms 

Gritta, Milan, Mohammad Taher Pilehvar, and Nigel Collier. "A pragmatic guide to geoparsing evaluation: Toponyms, Named Entity Recognition and 
pragmatics." Language resources and evaluation 54 (2020): 683-712.
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Geocoding (identifying geolocations/GPS)

561 unique document/toponym match pairs from 39 documents, with 
474 having non-empty matches, spanning 78 countries

RoBERTa F1 score .72 (.02) on exact matches and .85(.02) on partial 
matches.
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FineTuned Models F1 score .87 on exact matches and .97 on partial matches.



Belliardo, E., Kalimeri, K. and Mejova, Y., 2023, September. Leave no Place Behind: Improved Geolocation in Humanitarian Documents. 
In Proceedings of the 2023 ACM Conference on Information Technology for Social Good (pp. 31-39).



Relative Wealth Index

Chi, G., Fang, H., Chatterjee, S. and Blumenstock, J.E., 2022. Microestimates of wealth for all low-and middle-income countries. Proceedings of the National 
Academy of Sciences, 119(3), p.e2113658119.



Relative Wealth Index

Chi, G., Fang, H., Chatterjee, S. and Blumenstock, J.E., 2022. Microestimates of wealth for all low-and middle-income countries. Proceedings of the National Academy of 
Sciences, 119(3), p.e2113658119.



Could we possibly employ the RWI index in an  
social assistance programme?

© UNICEF

Sartirano, D., Kalimeri, K., Cattuto, C., Delamónica, E., Garcia-Herranz, M., Mockler, A., Paolotti, D. and Schifanella, R., 2023. Strengths and limitations of relative wealth indices derived 
from big data in Indonesia. Frontiers in big Data, 6, p.1054156.
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• Index estimation methods are not standard 

• Different time frequency and spatial aggregation 



Poverty Surveys 

• not always measuring the same aspects of poverty (DHS, SUSENAS) 

• Index estimation methods are not standard 

• Different time frequency and spatial aggregation 

Lack of a unique “ground-truth”



Survey based index

RWI based index

Sartirano, D., Kalimeri, K., Cattuto, C., Delamónica, E., Garcia-Herranz, M., Mockler, A., Paolotti, D. and Schifanella, R., 2023. Strengths and limitations of relative wealth indices derived 
from big data in Indonesia. Frontiers in big Data, 6, p.1054156.



Accuracy vs Fairness 

• Good performance in population prediction (ranked correlations rho= .70 - .75) 
between the Survey and RWI indices 

• Good spatial representation with .72 -.79 AUROC in province and regency 
aggregations 



14th percentile



When considering the 14% poorest quantile 

18 out of 36 million people wrongly excluded

© UNICEF

Sartirano, D., Kalimeri, K., Cattuto, C., Delamónica, E., Garcia-Herranz, M., Mockler, A., Paolotti, D. and Schifanella, R., 2023. Strengths and limitations of relative wealth indices derived 
from big data in Indonesia. Frontiers in big Data, 6, p.1054156.
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Kooshki Forooshani, M., van den Homberg, M., Kalimeri, K., Kaltenbrunner, A., Mejova, Y., Milano, L., Ndirangu, P., Paolotti, D., Teklesadik, A. and Turner, M.L., 2024. Towards a global 
impact-based forecasting model for tropical cyclones. Natural Hazards and Earth System Sciences, 24(1), pp.309-329.

Can we have an early alert system for tropical cyclone impact?



48
IPCC, 2023: Sections. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate 
Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 35-115, doi: 10.59327/IPCC/AR6-9789291691647



CURRENT APPROACH
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Shortcomings

▪ Limited Hazards Considered: Only tracks hurricane path and intensity; 

lacks surge, rainfall, and multi-hazard data.

▪ No Infrastructure Impact: Only population exposure; does not account 

for infrastructure damage estimates.

▪ Misleading population at risk estimates: Early cyclone error cones are 

too wide for an accurate estimation of humanitarian support. 

Method

▪ Uses forecast error cones from hurricane predictions, like the Esri 

Disaster Response Program/NOAA overlaid with population density 

maps.

https://esri-disasterresponse.hub.arcgis.com/maps/19d3a0c8a51b44179fbf7b3a7489cb65/about
https://esri-disasterresponse.hub.arcgis.com/maps/19d3a0c8a51b44179fbf7b3a7489cb65/about


• model evaluation 
• feature selection 
• cross validation 
• explored different ML models

Optimised the 510 model

RMSE
Average of 100 random shuffle split

XGBoost regression model (M1) Combined model

bin_1:  [0,1) 1.04(±0.09) 1.25(±0.10)

bin_2: [1,10) 4.36(±0.31) 5.40(±0.49)

bin_3: [10,20) 8.99(±0.53) 7.58(±0.71)

bin_4:  [20,50) 17.49(±1.10) 13.86(±1.15)

bin_5: [50,101) 31.83(±4.11) 28.18(±3.84)Hi
gh

er
 Im

pa
ct



Model Improvements
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• Used only global, grid-based features


• Added social and vulnerability features


• relative wealth index (from Meta)


• %houses-damaged in the last 5 

years 


• %grid classified as rural, urban or 

water (from GHSL)


• Compared to the municipality based 

model


• XGBoost regression model


• Compare to a naive baseline model


• Transform output to the municipality 

level


• Applied feature importance



Case Study: Typhoon Melor, 2015

Actual Damage per municipality Predicted Damage by the 2SG-Global+ 
model (F1 .64)  
35/41 correctly identified 
municipalities vs 25/41 of old model

Prediction Error



On an average $145,000 cost per municipality, the saving from 4 
fewer false alarms is more than half a million dollars. 

But OCHA doesn’t just “save” money – it reallocates it from 
mistaken early actions to people who actually suffer ≥10 % housing 
destruction, sharpening the value-for-money of each dollar.



Example of Questionable Groundtruth data - Vietnam 



Example of Questionable Groundtruth data - Vietnam 



“All models are wrong but some are useful”  
 George Box 

“The extent and complexity of the problem does not matter as much as  
the willingness to solve it” - Ralph Marston
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Dakar

Conakry

GUINEA

190k  
children have never received a single 

vaccine

1 out of 10 
children do not reach the age of five

Yomou

In search of zero dose children in remote 
districts of Guinea

slide credit Martin Bogaert & Tommaso Salvatori



Source: WUENIC Trends

Administrative data reporting is prone to errors

National vaccination coverage data in Guinea, 2010-2023
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Source: WUENIC Trends

>100% coverage

Government 
estimate

Admin 
data

National vaccination coverage data in Guinea, 2010-2023

Administrative data reporting is prone to errors

slide credit Martin Bogaert & Tommaso Salvatori



To estimate zero-dose children, we need both vaccination and 
population maps
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Alternative ways to estimate subnational coverage

GUINEA

MALI

CÔTE 
D’IVOIRE

CHAD

CAMEROON
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Suitable for use in unique 
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methodologies and 
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Understand 
methodologies and 
identify sources of 

variability

%

Compare pre-
existing models and 
quantify variability

Evaluate validity 
of UNICEF’s 

strategy

Alternative ways to estimate subnational coverage

slide credit Martin Bogaert & Tommaso Salvatori
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https://github.com/wpgp/RtU_vaccination_modelling/tree/main
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What’s at stake?

Estimated number of under-five children lives 
saved by achieving 95% vaccination coverage 

by country

103,000
child deaths could be avoided every 
year in the 5 countries by achieving 
95% coverage

28k

16k
27k

15k
17k6,400

child deaths could be prevented for 
every 1% increase in vaccination 
coverage



Take Aways 

Vulnerability is multifaceted  

The “It works!” trap - Accuracy vs Fairness  

Data & Tools you employ are likely not originally 
thought to address the problem you tackle 

Social Good problems are complex  - often there is 
time pressure but make sure to thoroughly observe 
your models’ outputs 

Carefully consider the tradeoffs  

© UNICEF



© UNICEF

All models are wrong but some are useful  
- George E. P. Box
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Interesting Reads

• https://developers.google.com/machine-learning/foundational-courses 

• https://developers.google.com/machine-learning/glossary#bias-ethicsfairness 

• https://web.archive.org/web/20200322095332id_/https://
www.microsoft.com/en-us/research/wp-content/uploads/2017/03/SSRN-
id2886526.pdf 

• https://medium.com/data-science/the-limitations-of-shap-703f34061d86
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