

Machine Learning for Social Good

Algorithmic & Data Challenges when working with Vulnerable Populations

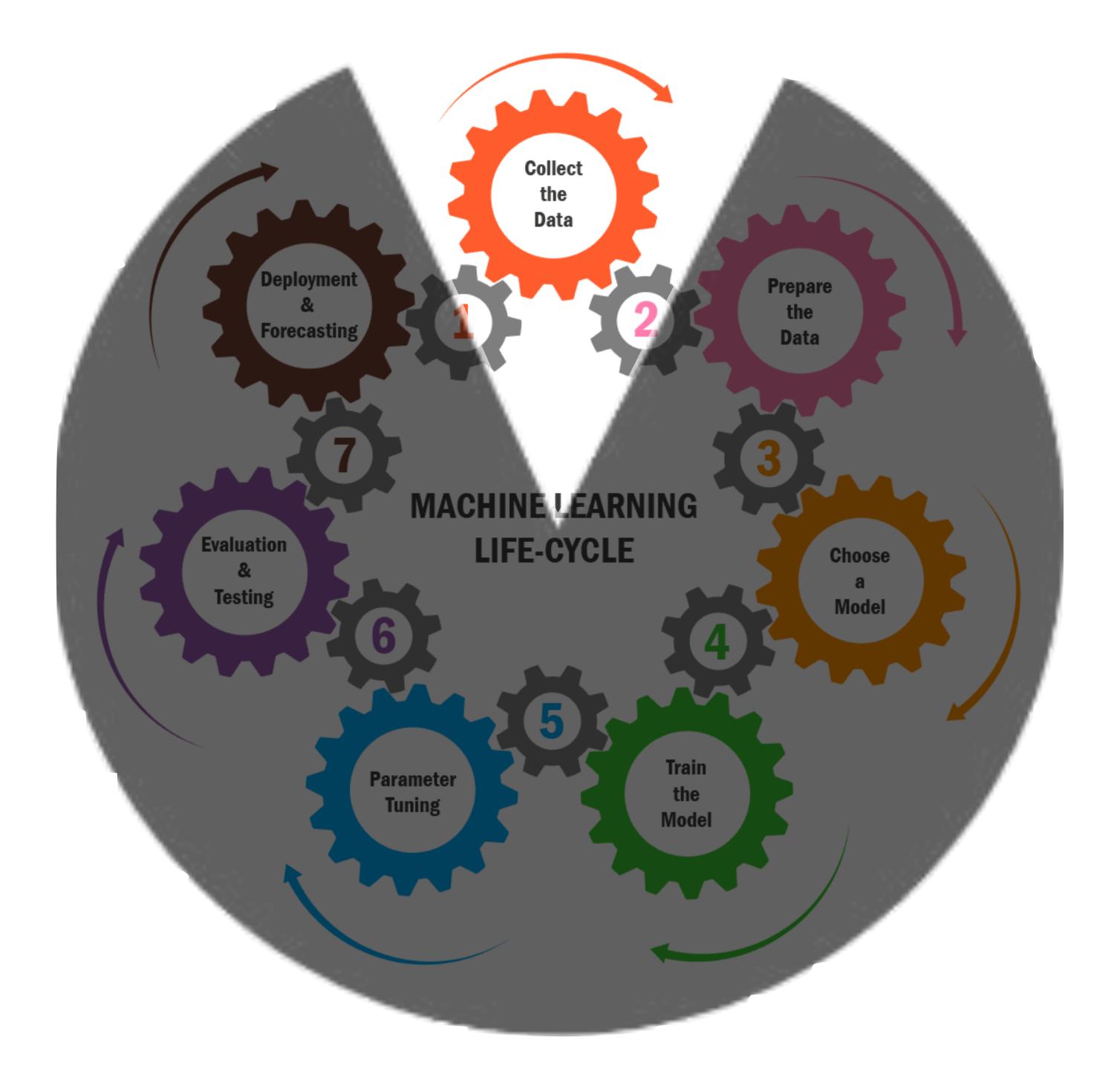
Kyriaki Kalimeri

Machine Learning models are increasingly more employed to in the humanitarian sector to inform decision-making

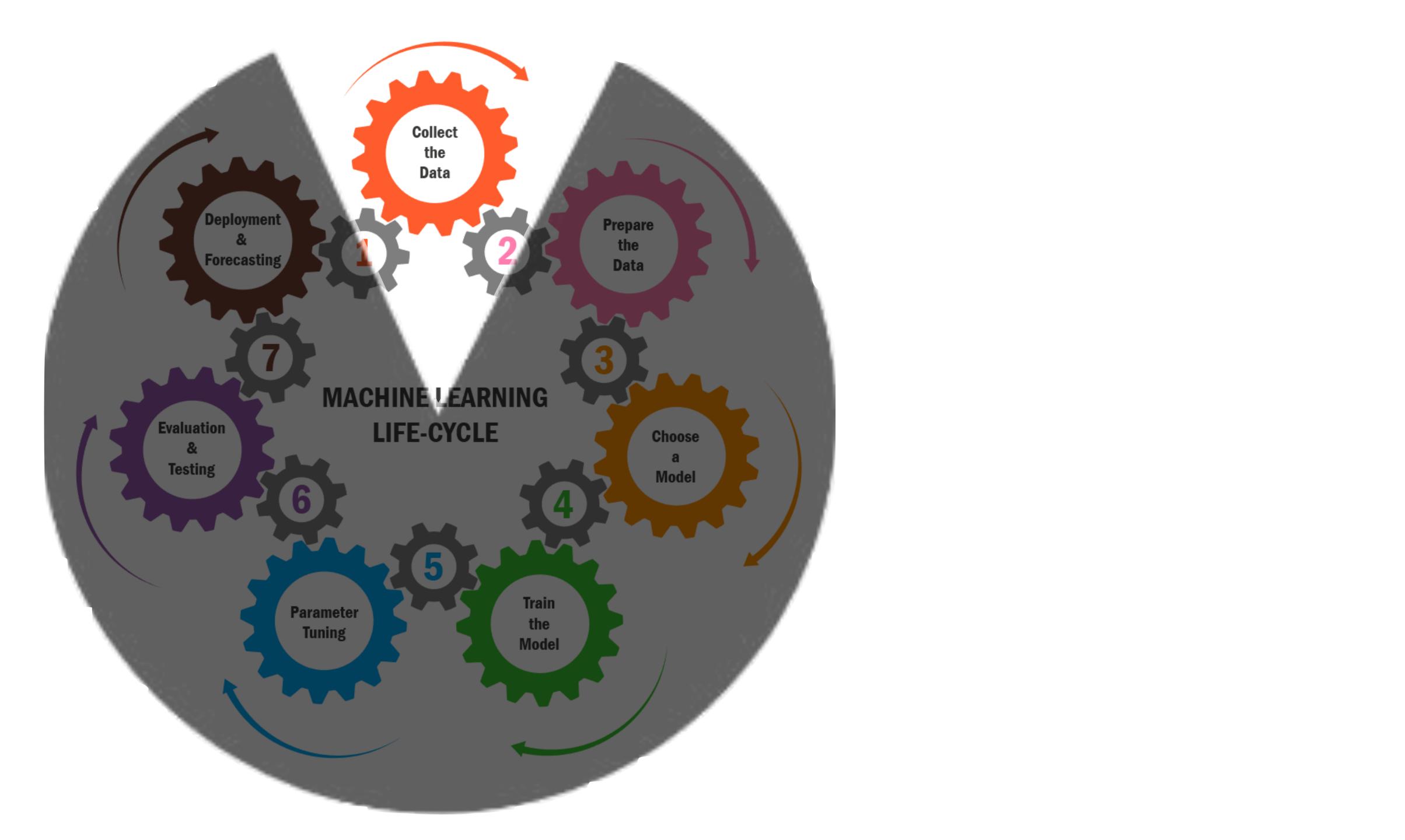
Ensure fairness, transparency, and accountability in model development and deployment

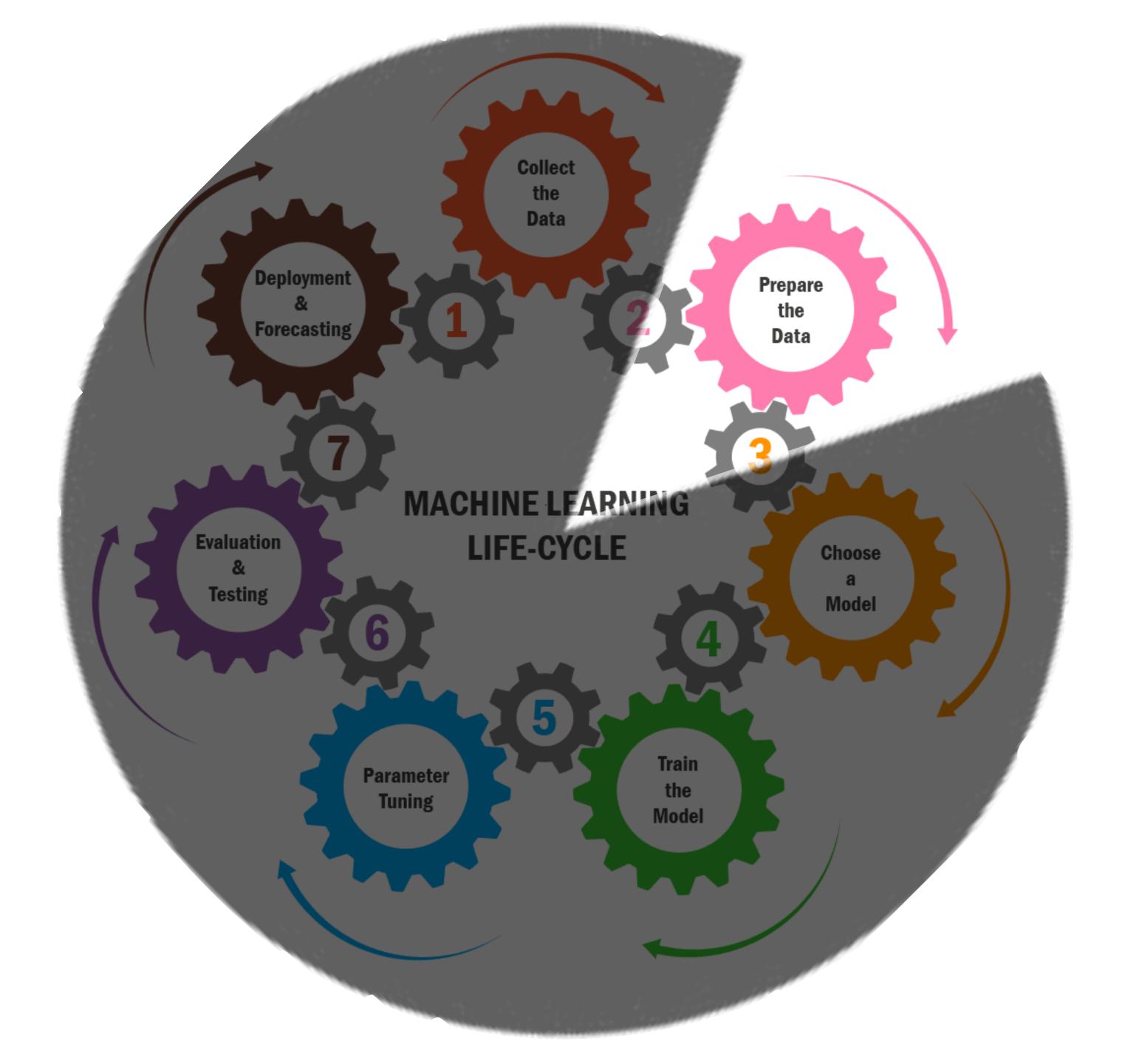
Vulnerability refers to the susceptibility of individuals or groups to harm or adverse outcomes due to their specific characteristics, contexts, or lack of access to resources and opportunities.

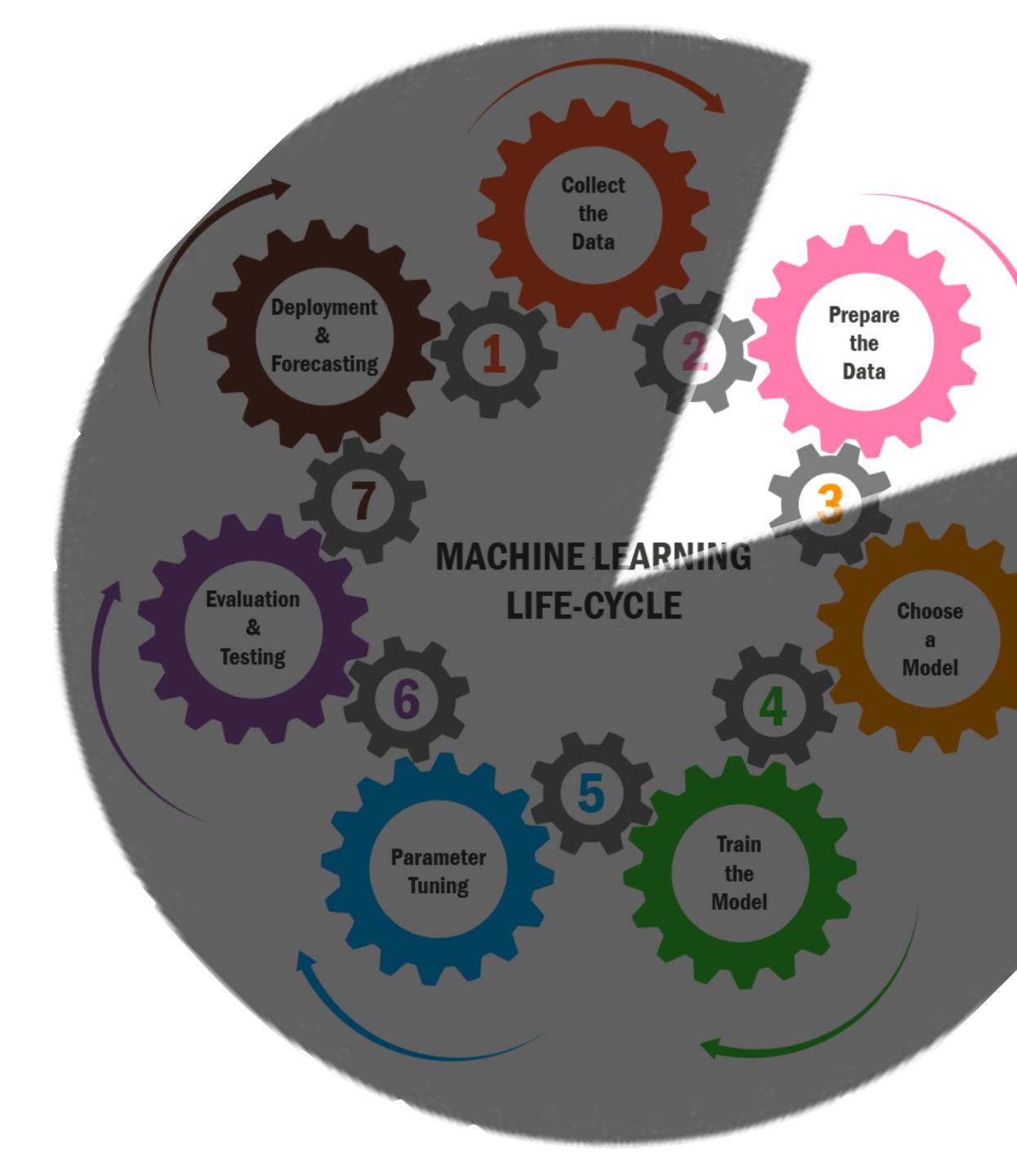
Biases may exist in every step of the pipeline



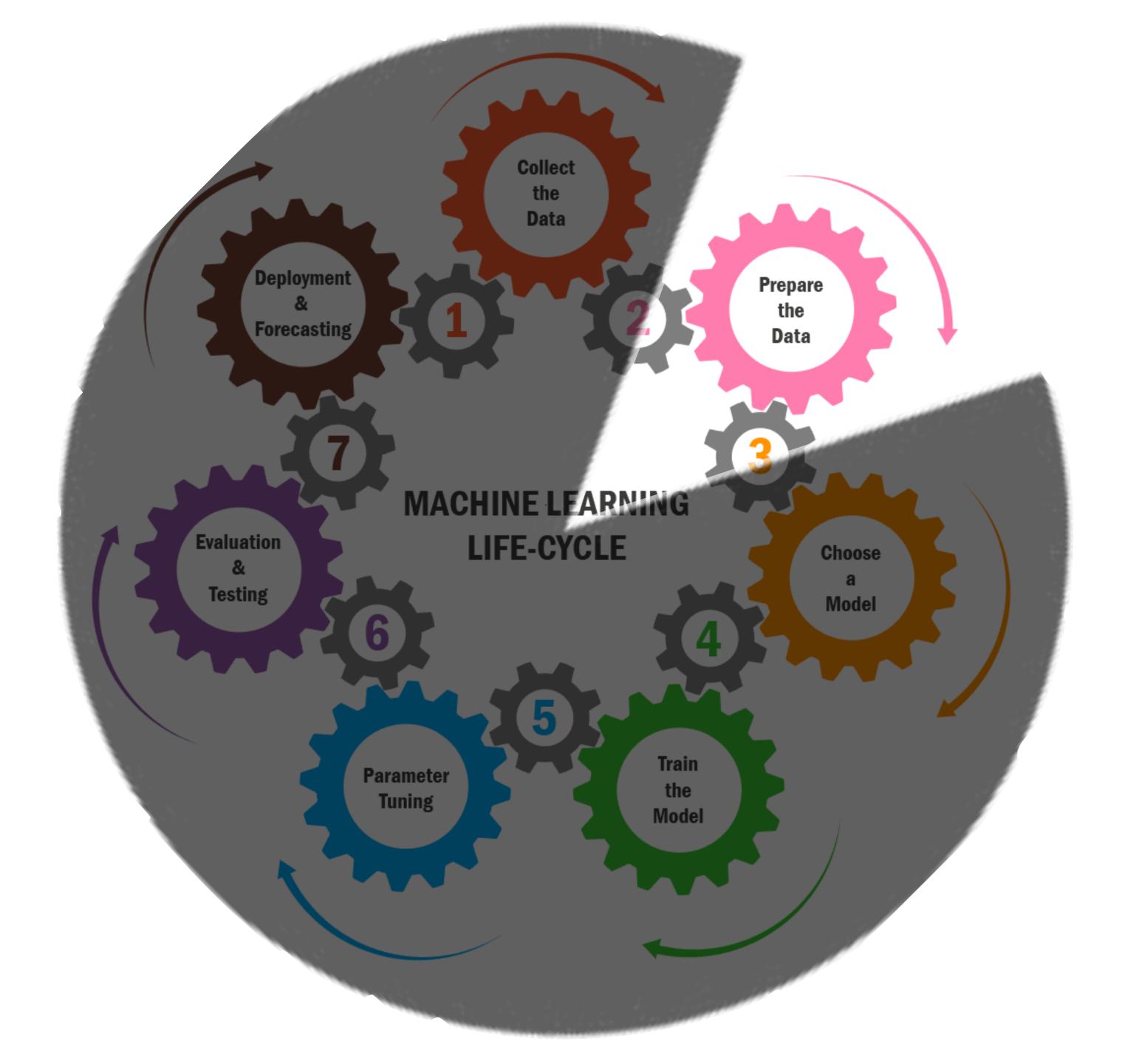
• Sampling & coverage

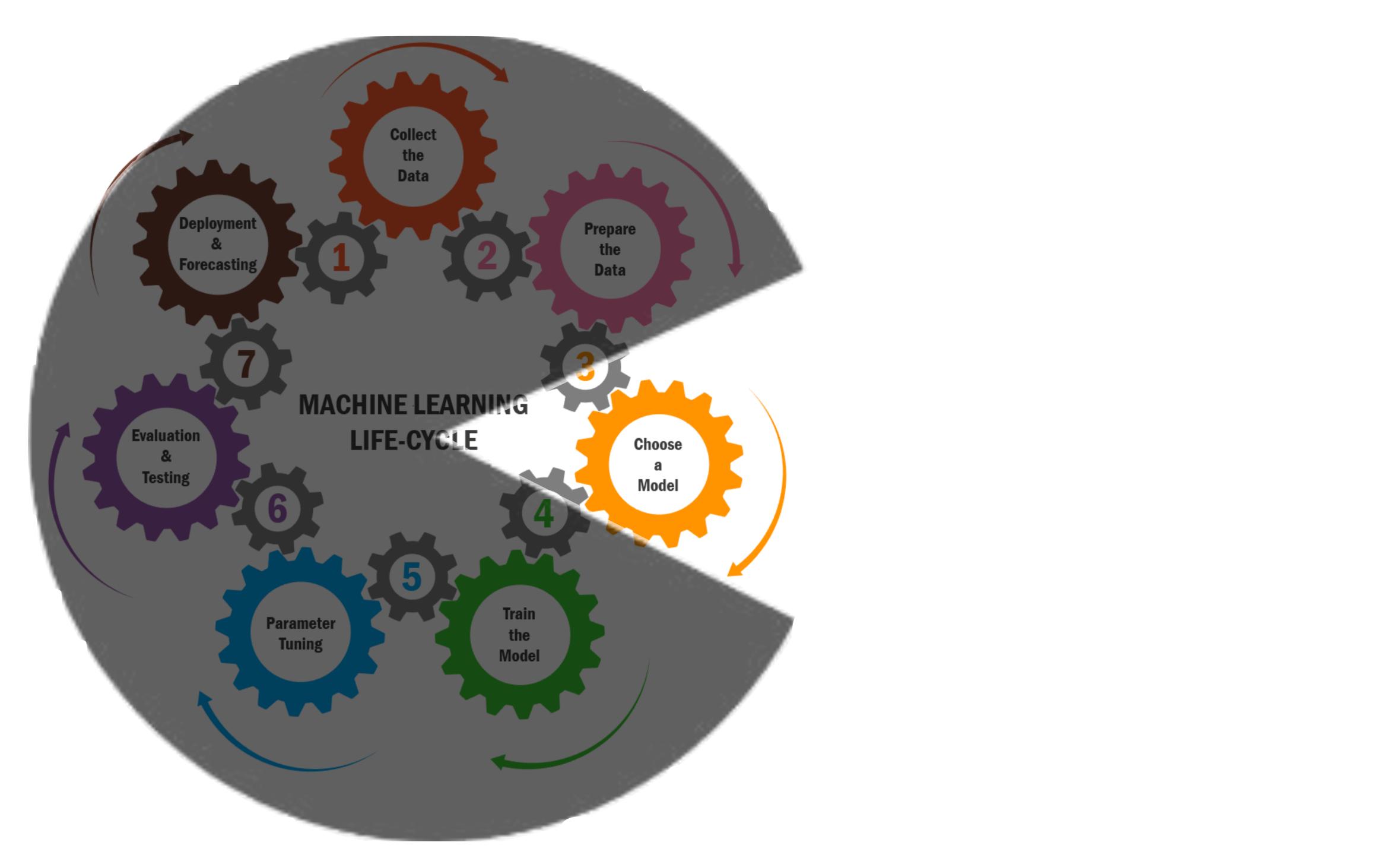


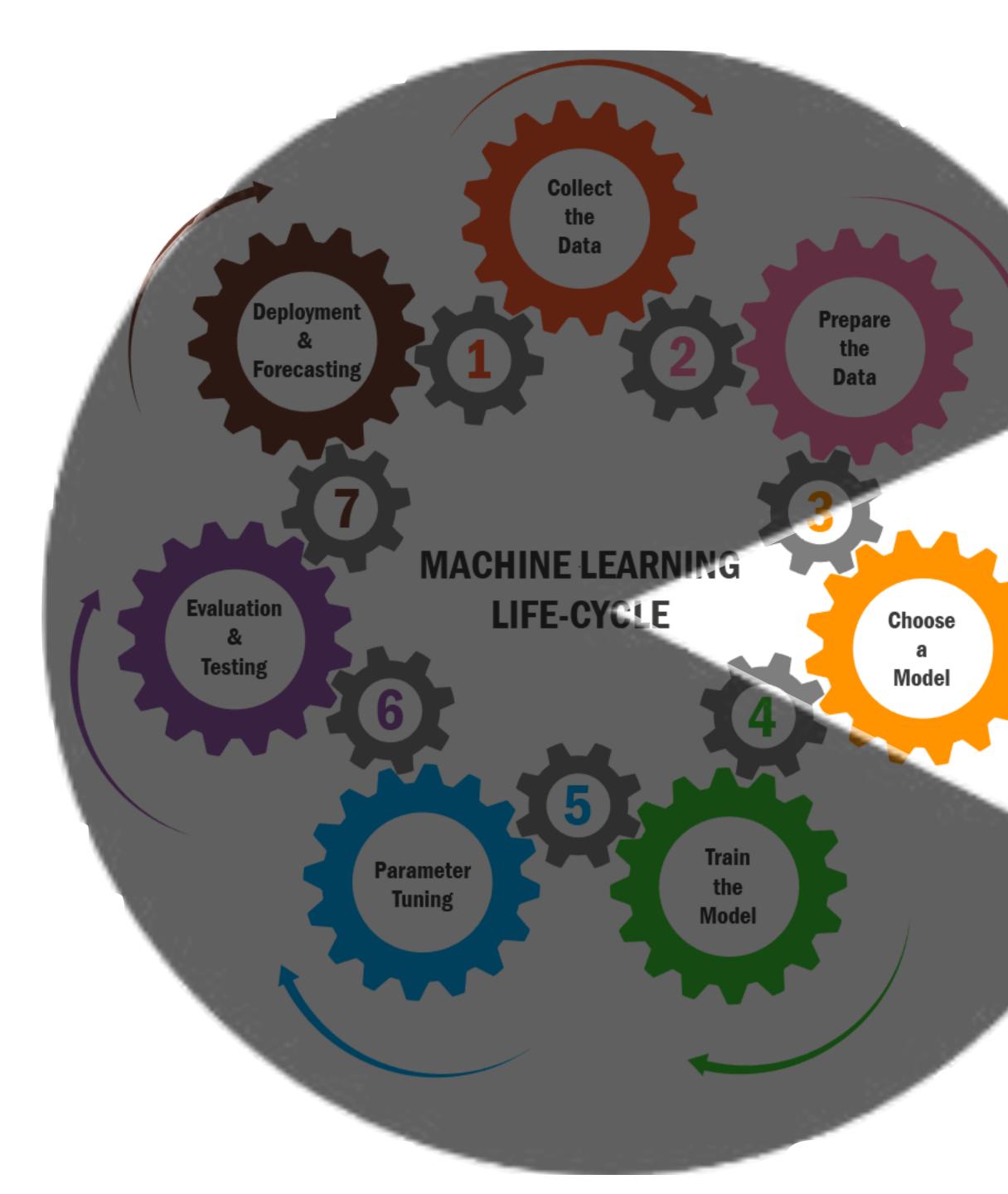




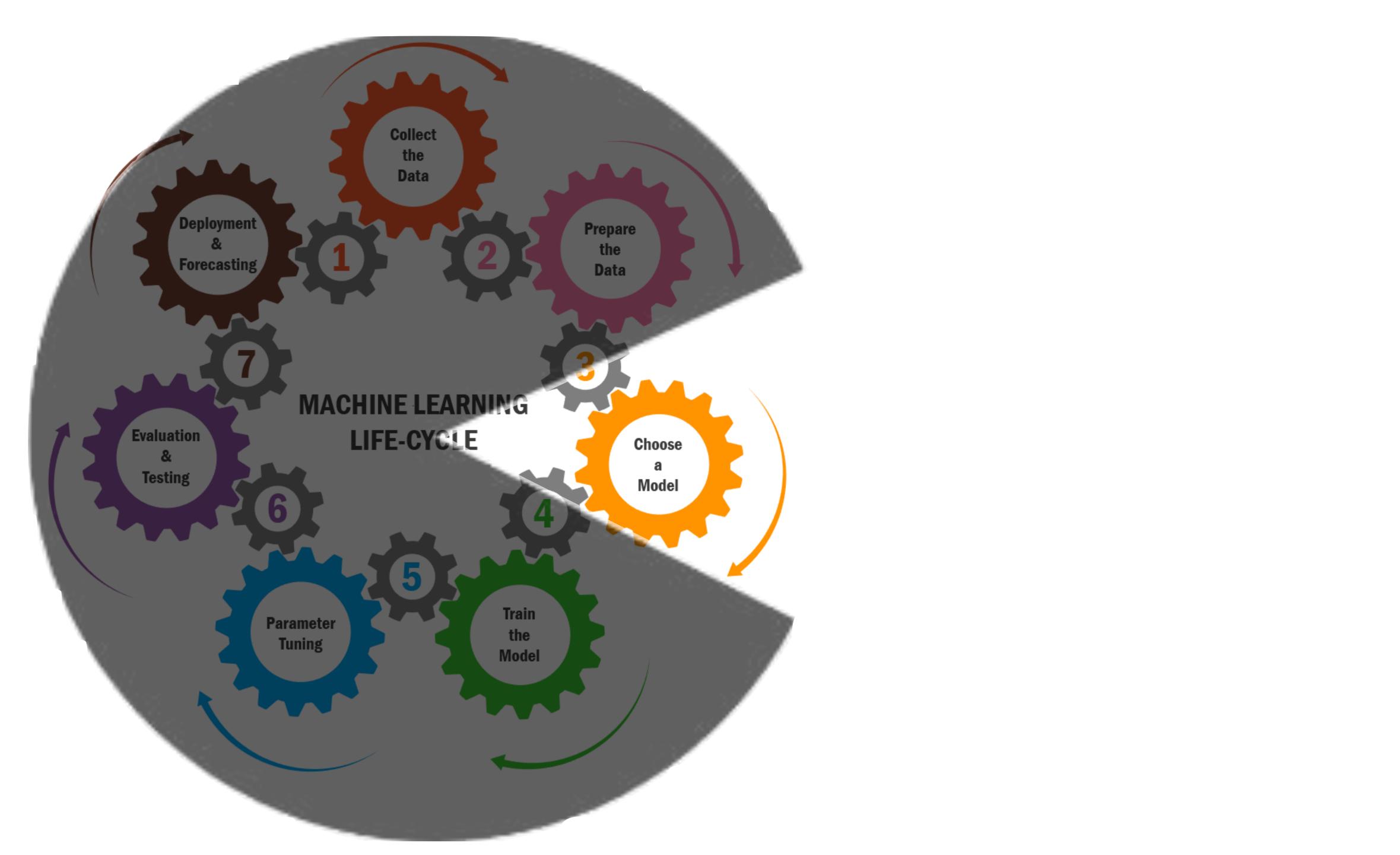
- Systematic missingness
- Sensitive-attribute handling
- Bias-aware preprocessing
- Harmonisation across silos

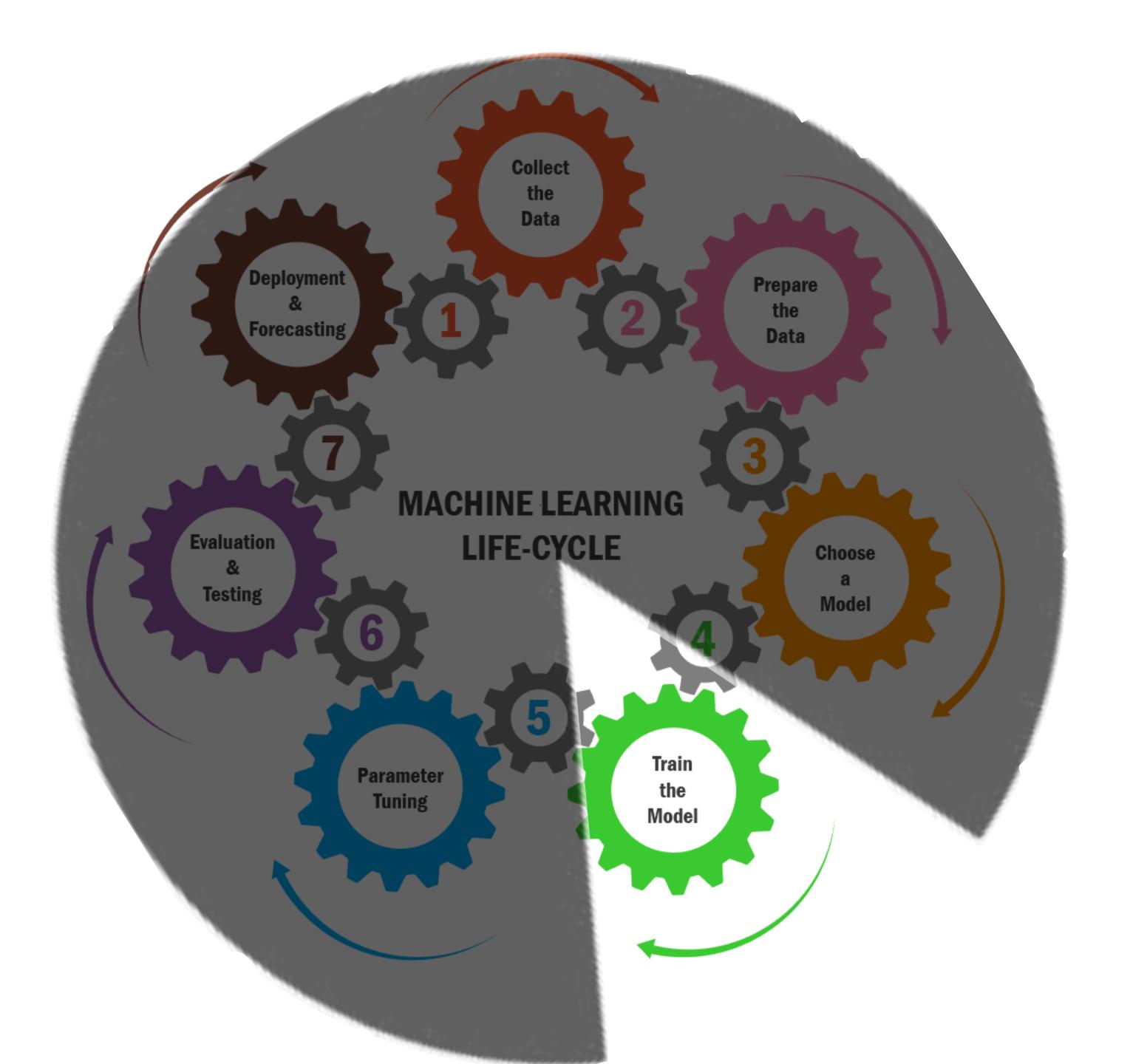


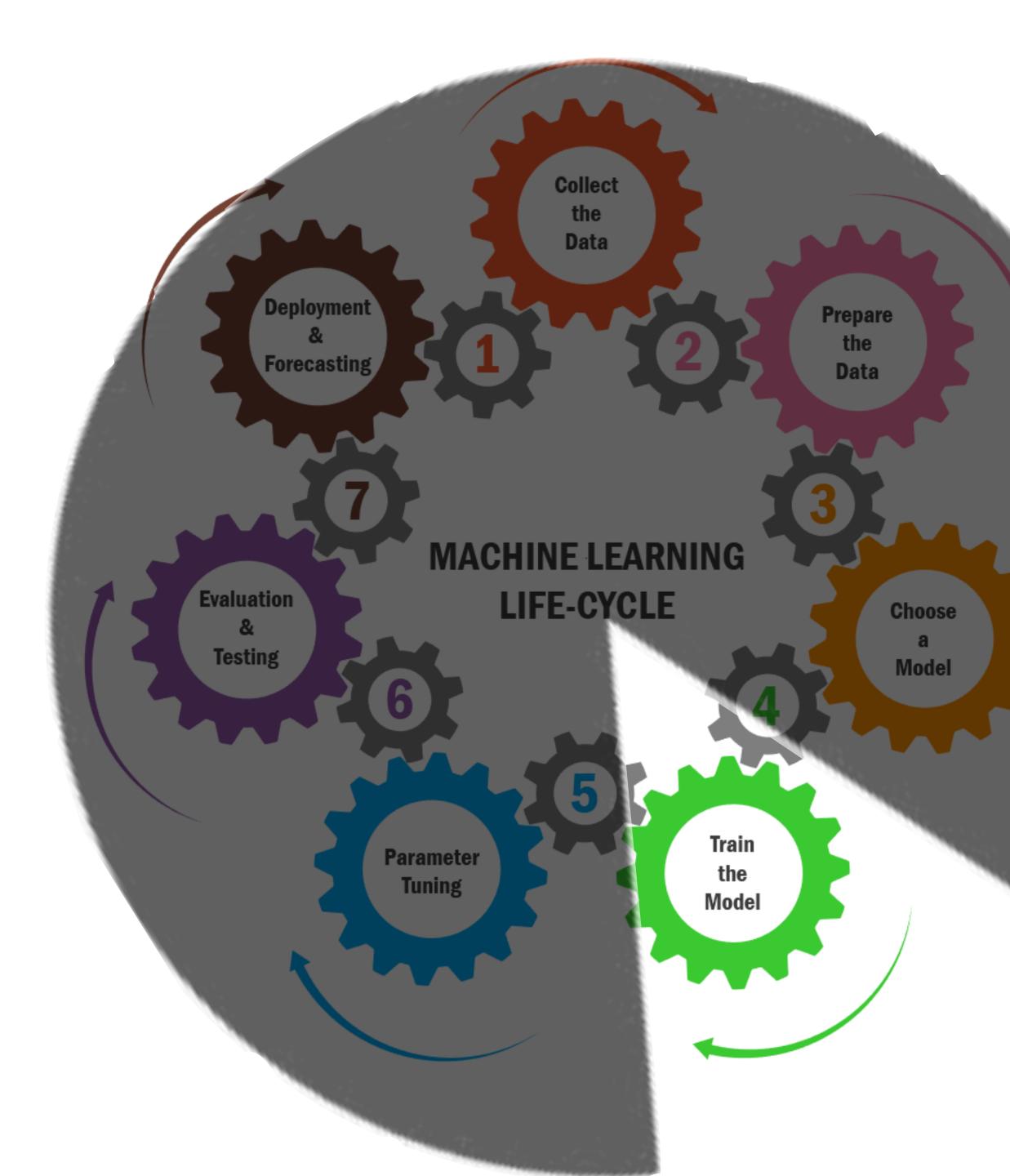




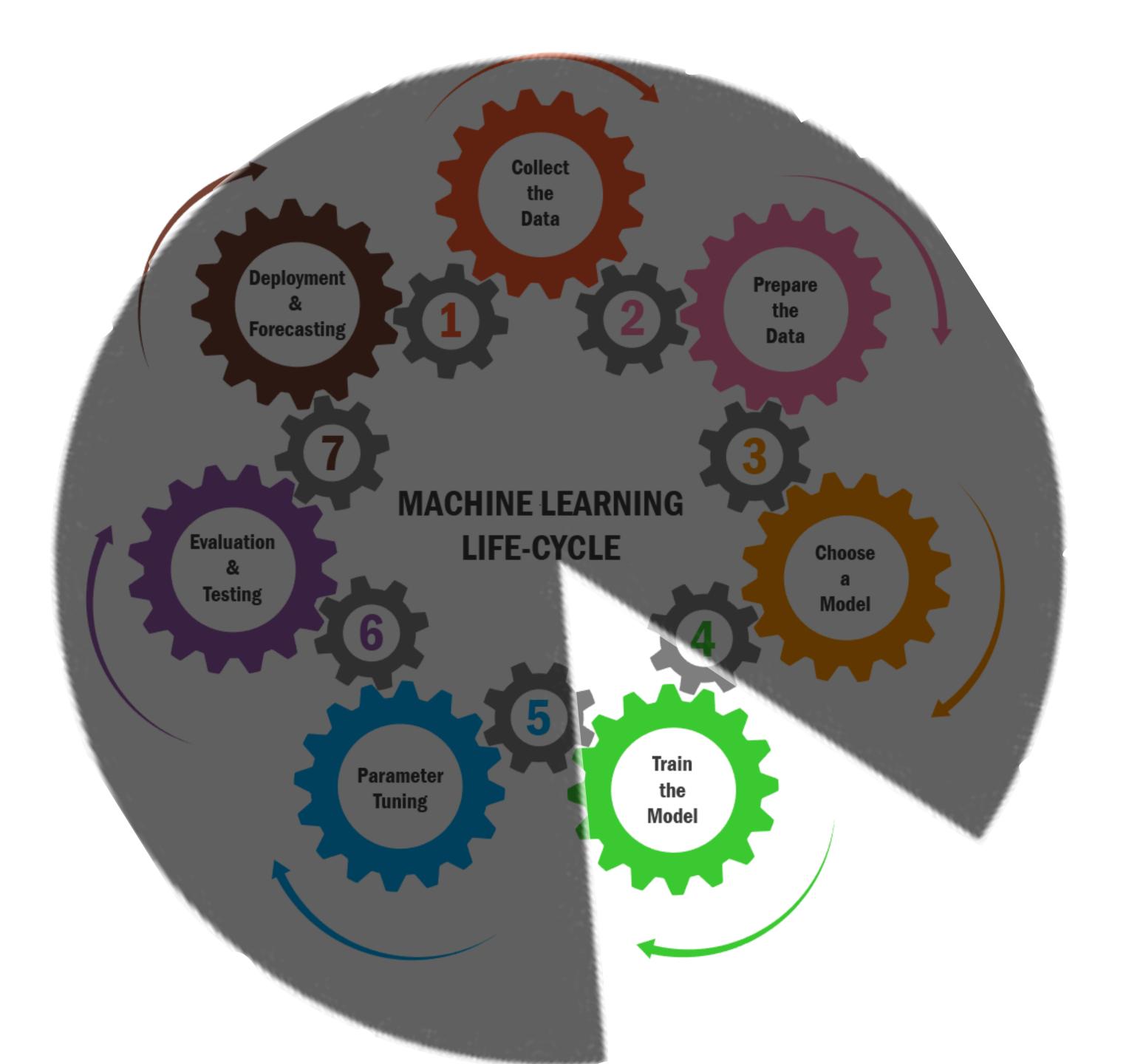
- Accuracy vs explainability
- Fairness constraints
- Robustness to imbalance

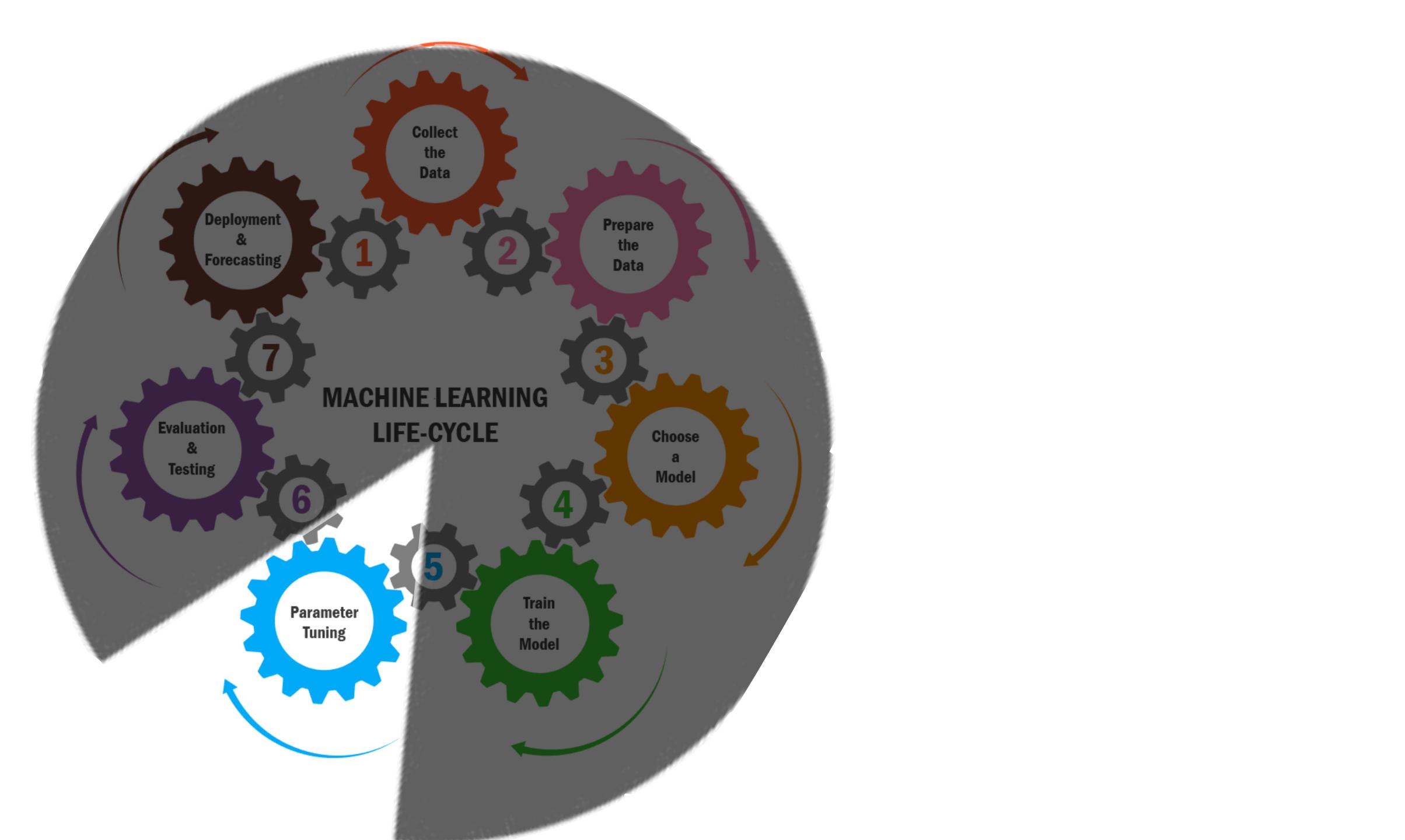


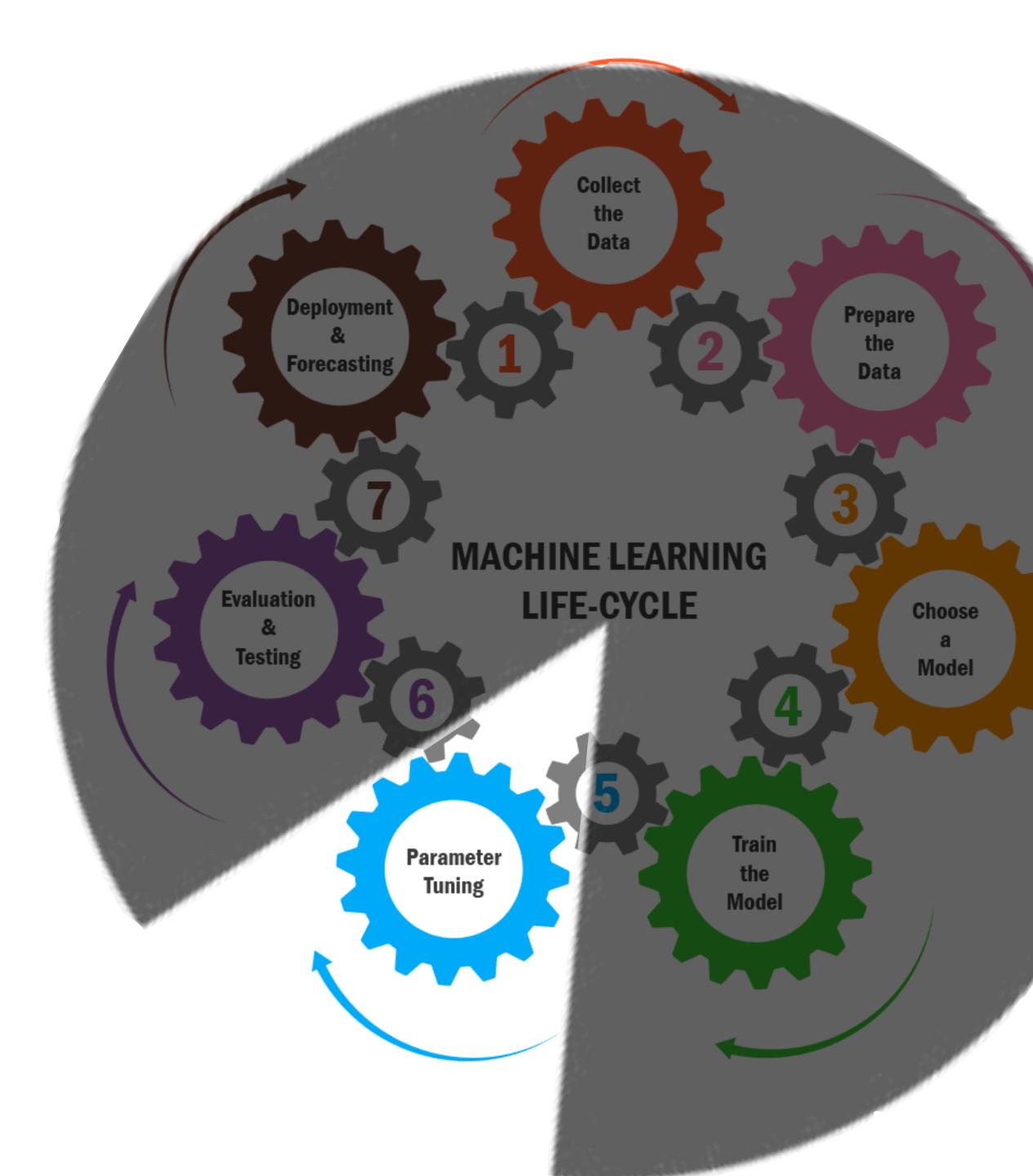




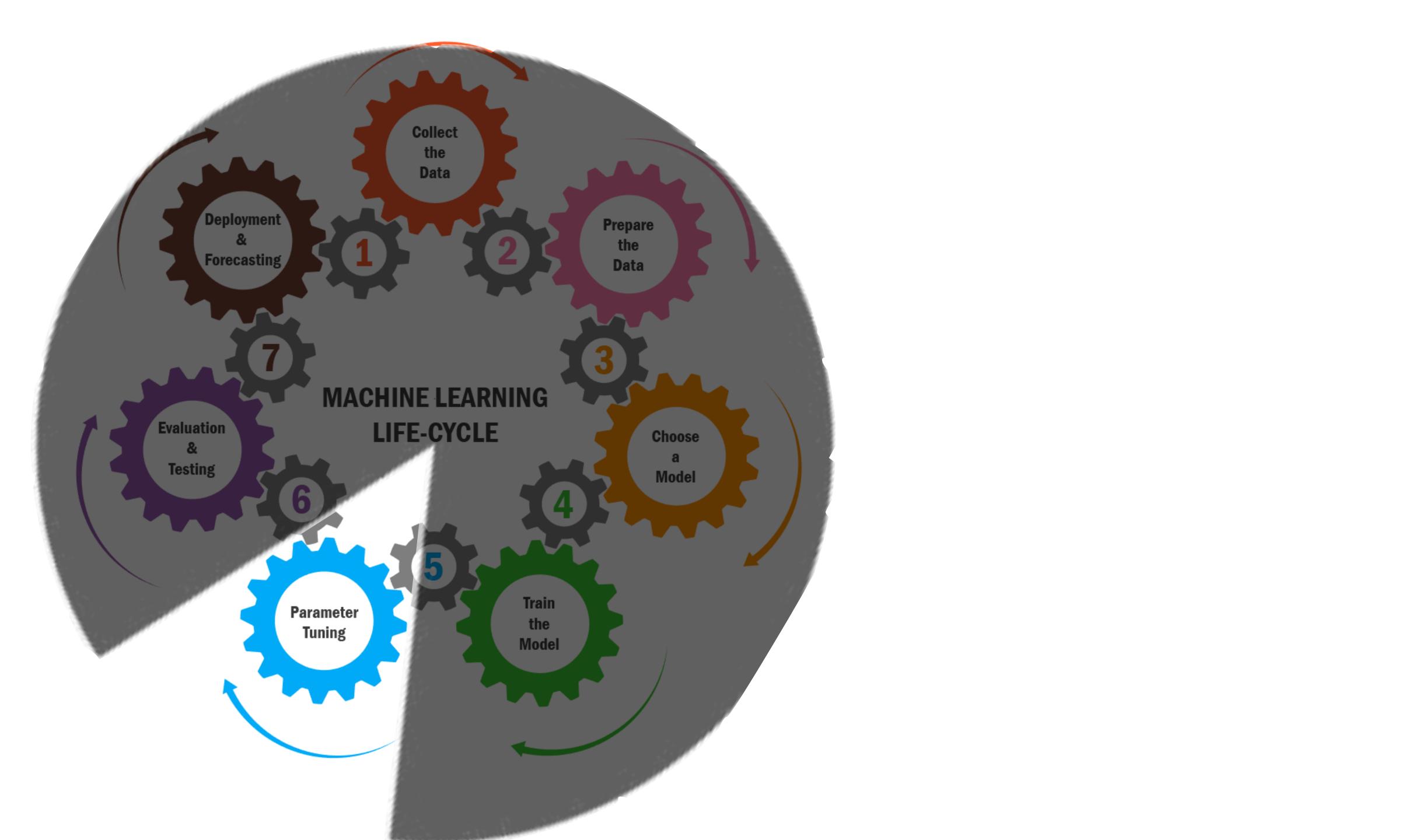
• Class imbalance & rare events

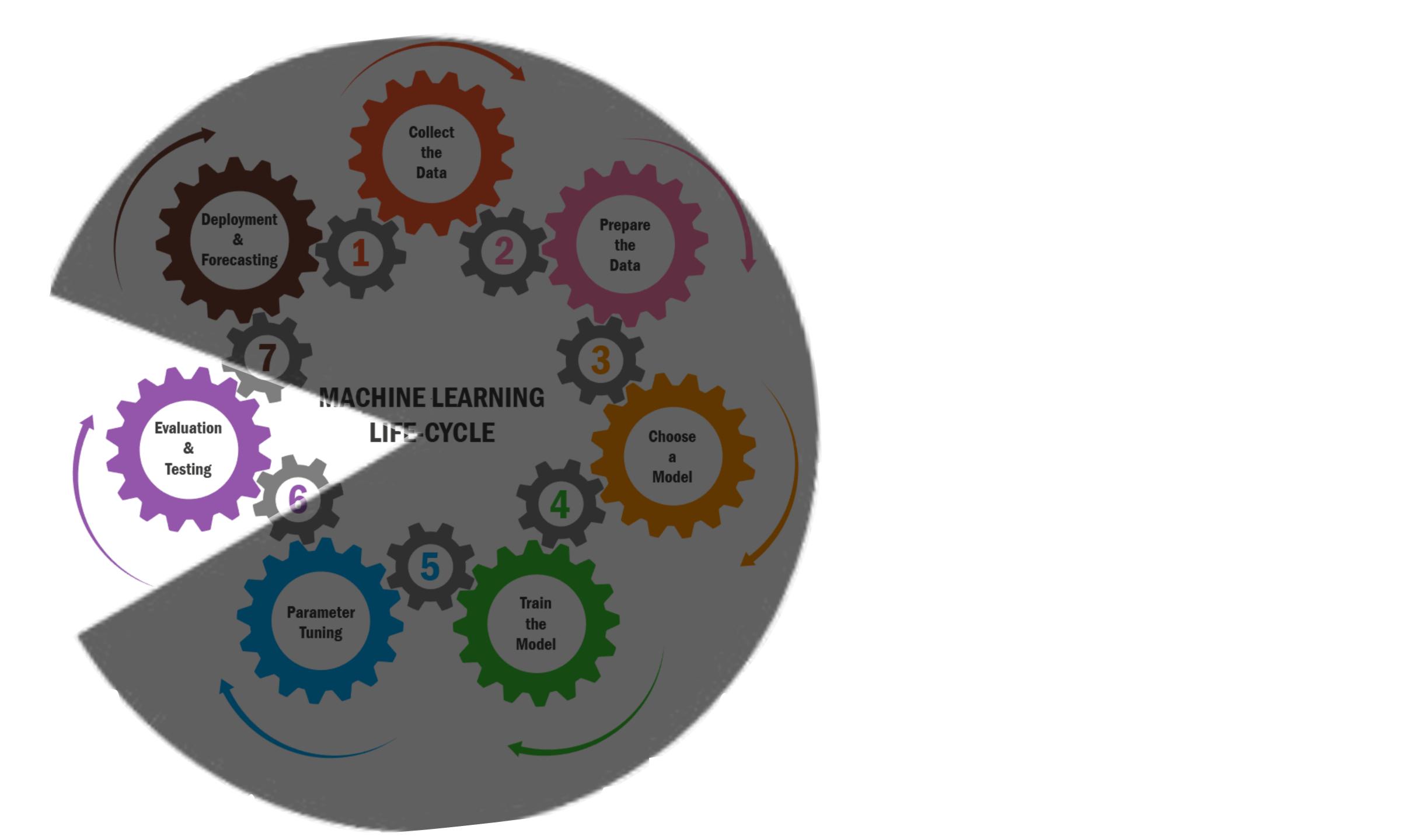


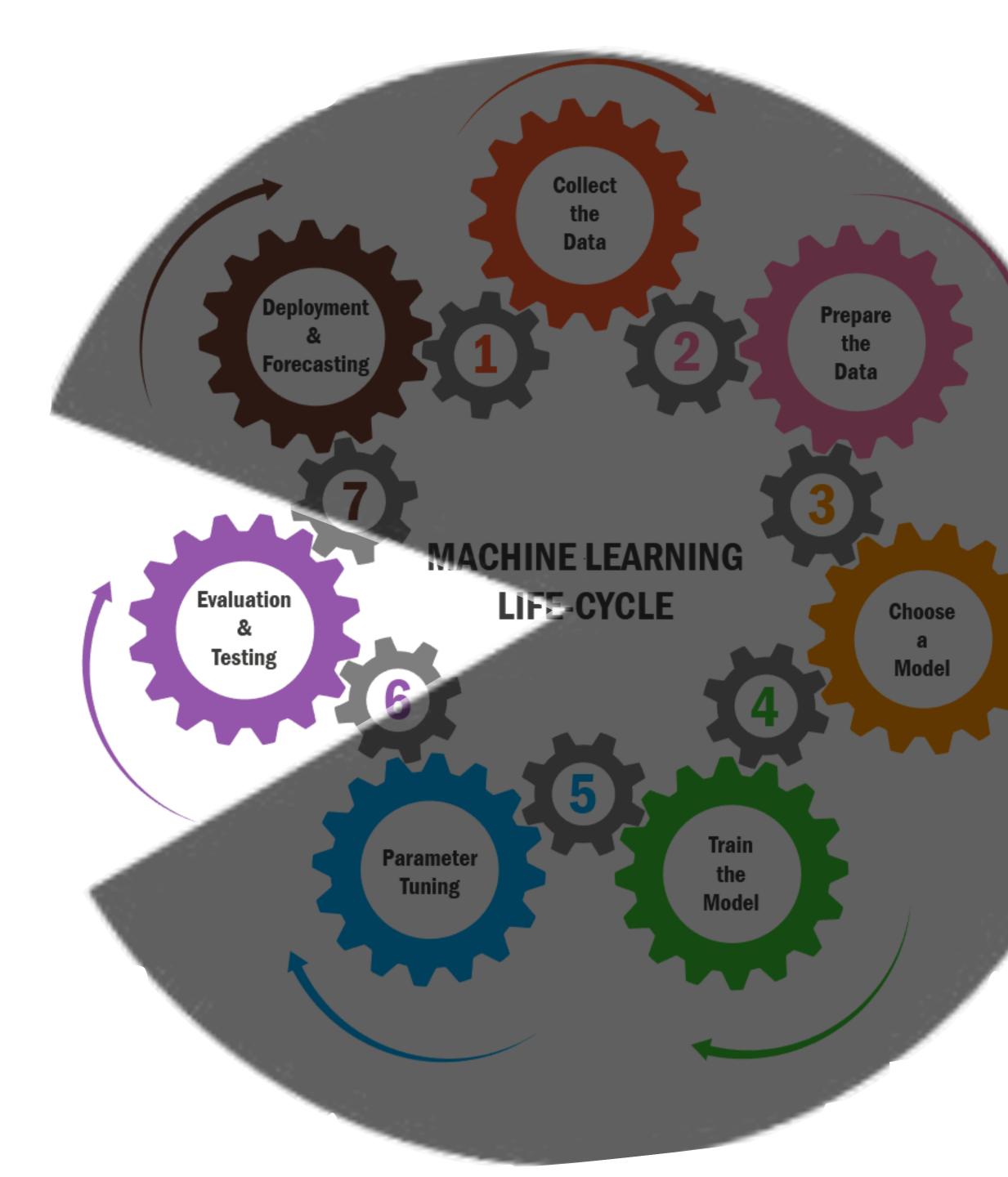




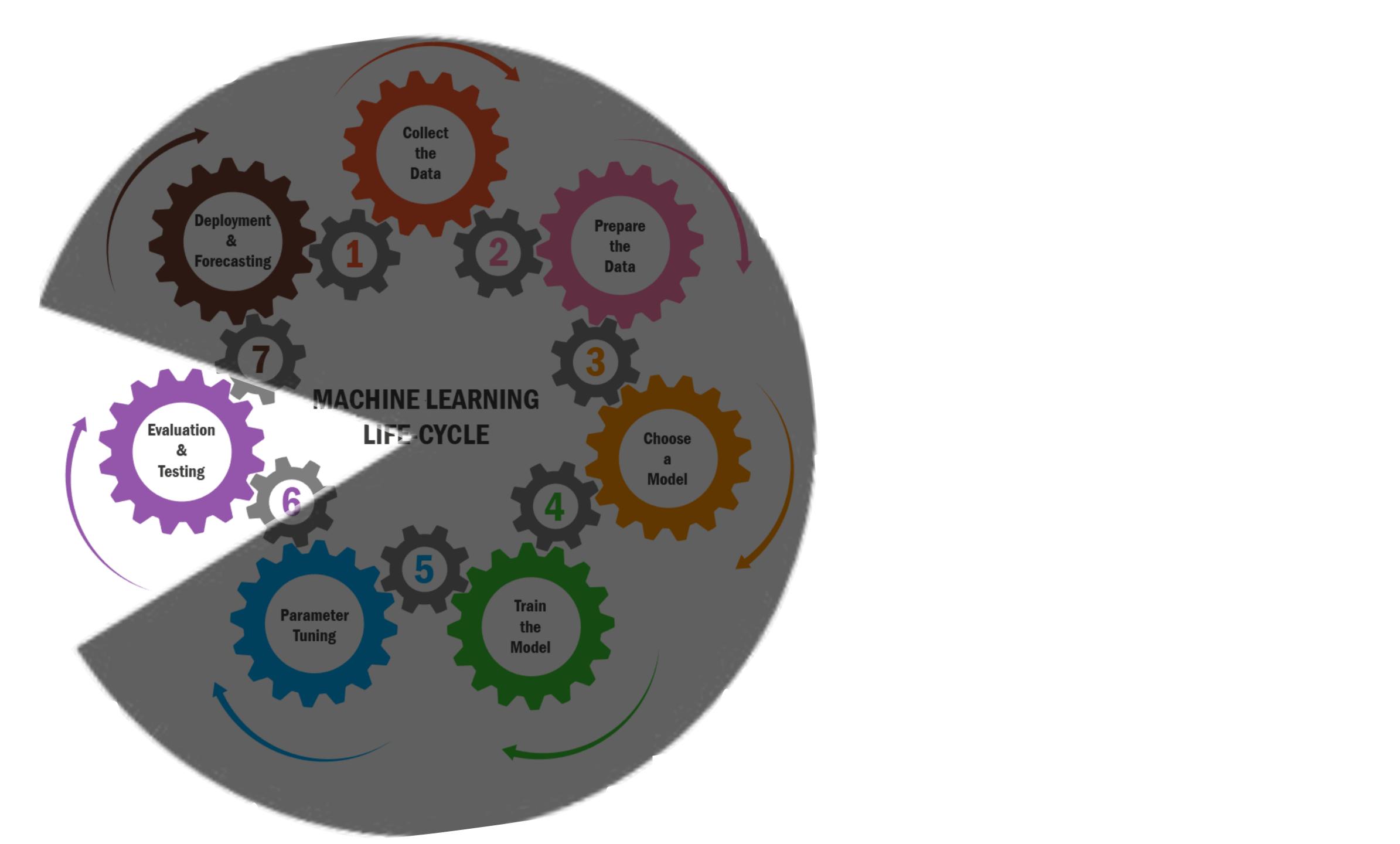
- Sparse validation sets
- Overfitting to fairness metrics

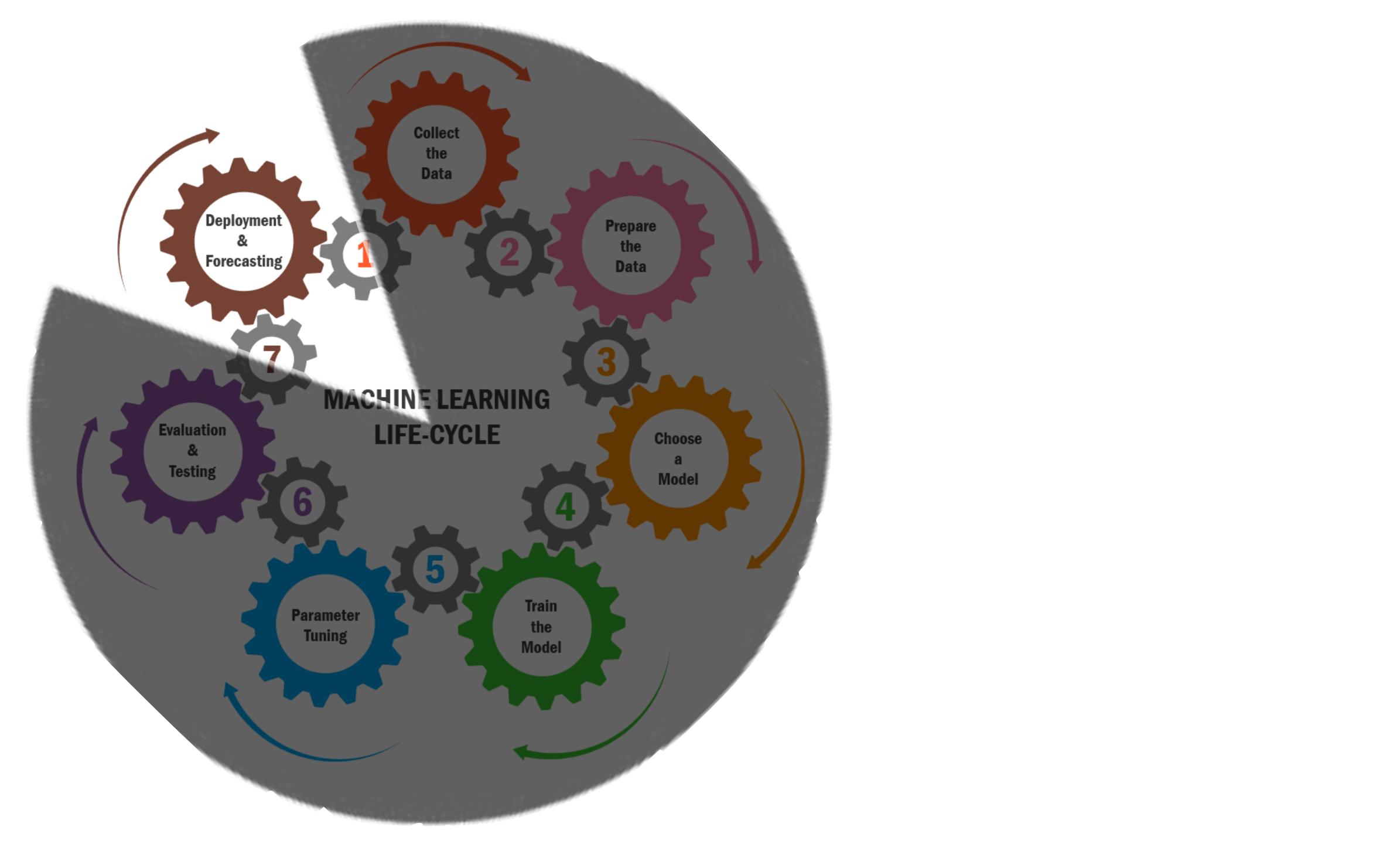


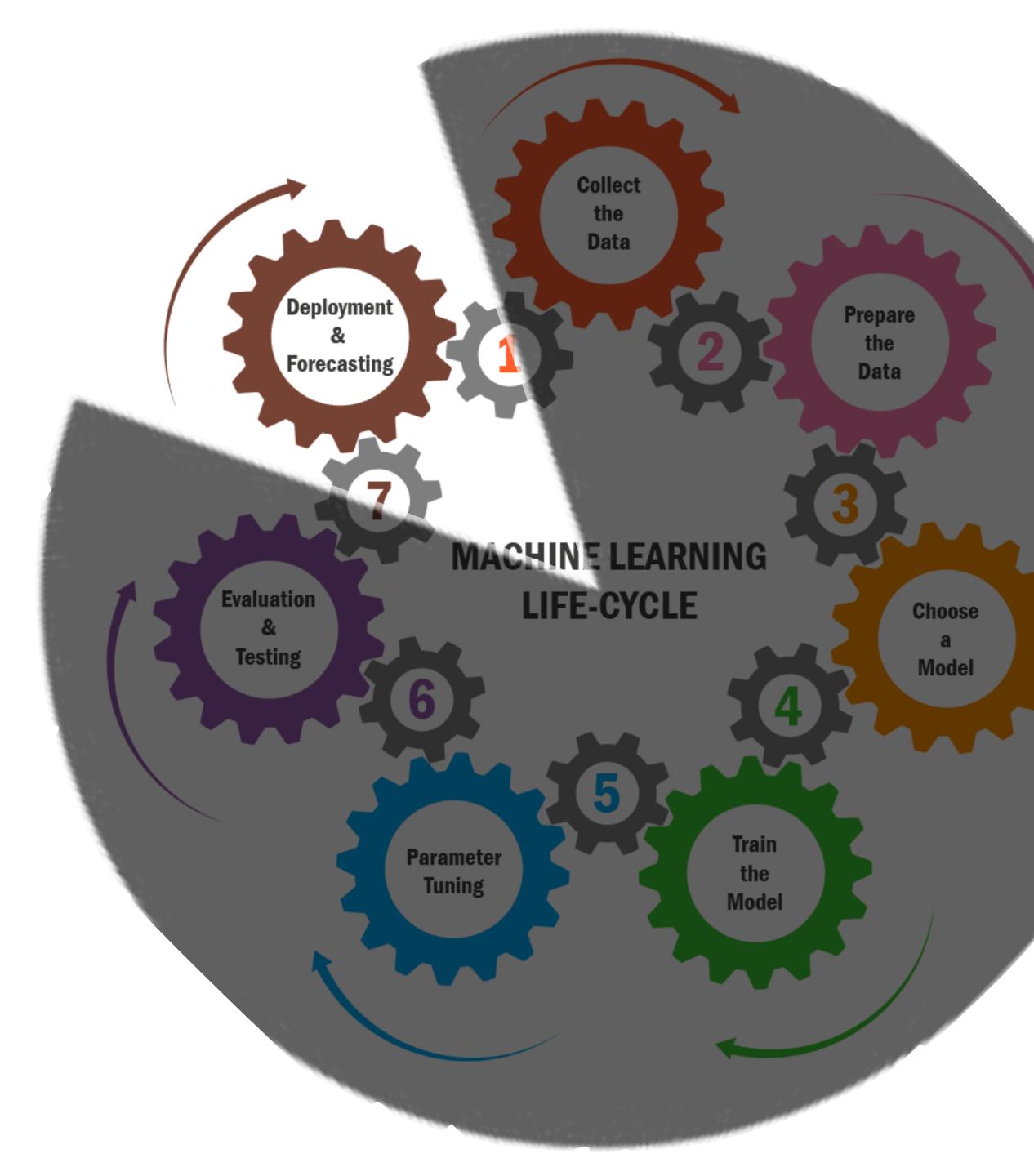




- Intersectional fairness auditing
- External validity
- Counterfactual ground truth scarcity







• Transparency & contestability

• Sustainability & hand-off

"For your own sanity, you have to remember that not all problems can be solved.

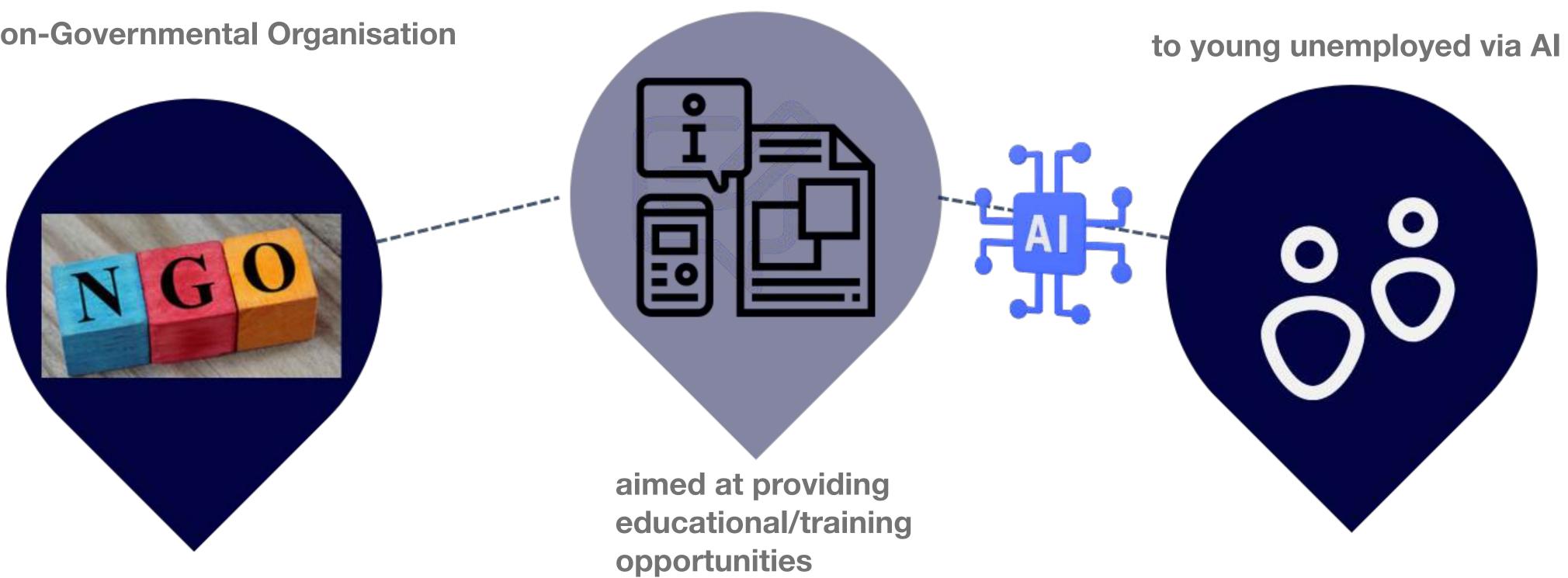
Not all problems can be solved, but all problems can be illuminated."

Ursula Franklin

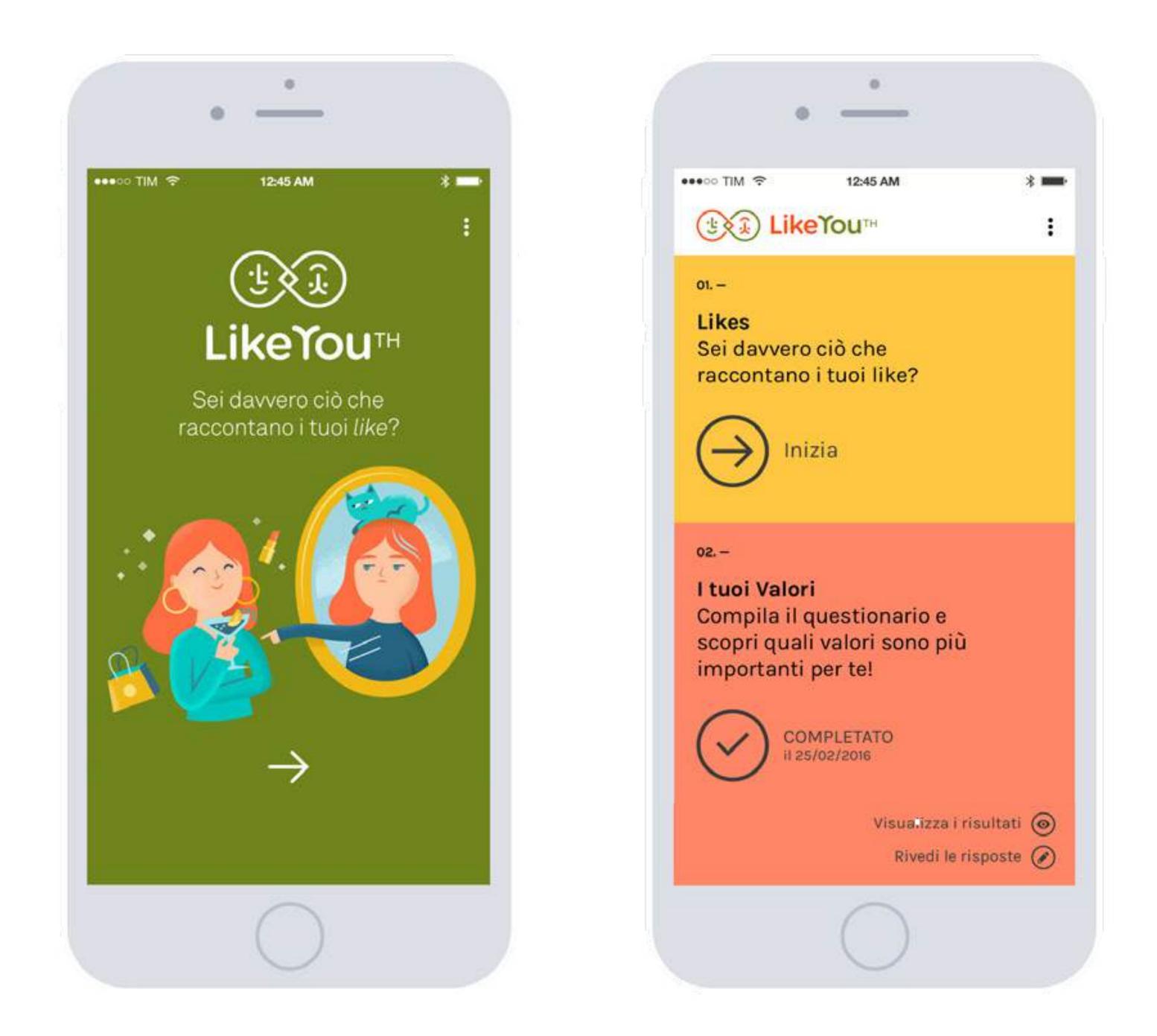
© UNICEF

Accuracy versus Fairness

A Non-Governmental Organisation



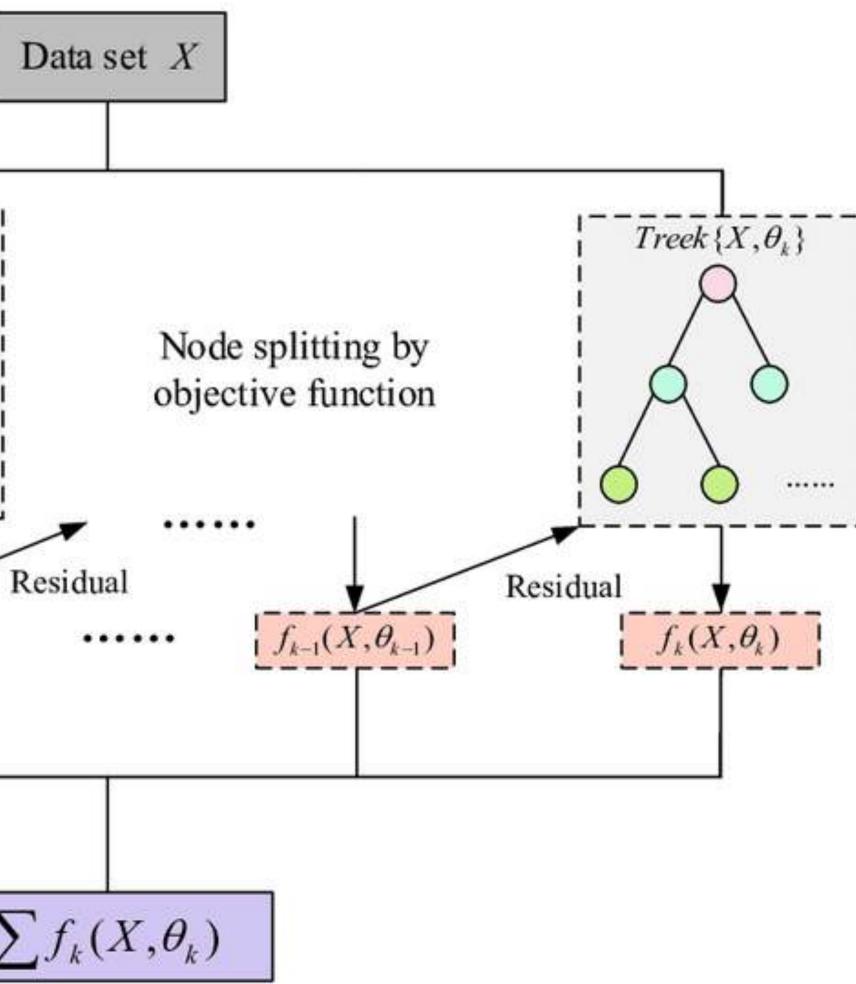
Beiró, M.G. and Kalimeri, K., 2022. Fairness in vulnerable attribute prediction on social media. Data Mining and Knowledge Discovery, 36(6), pp.2194-2213.

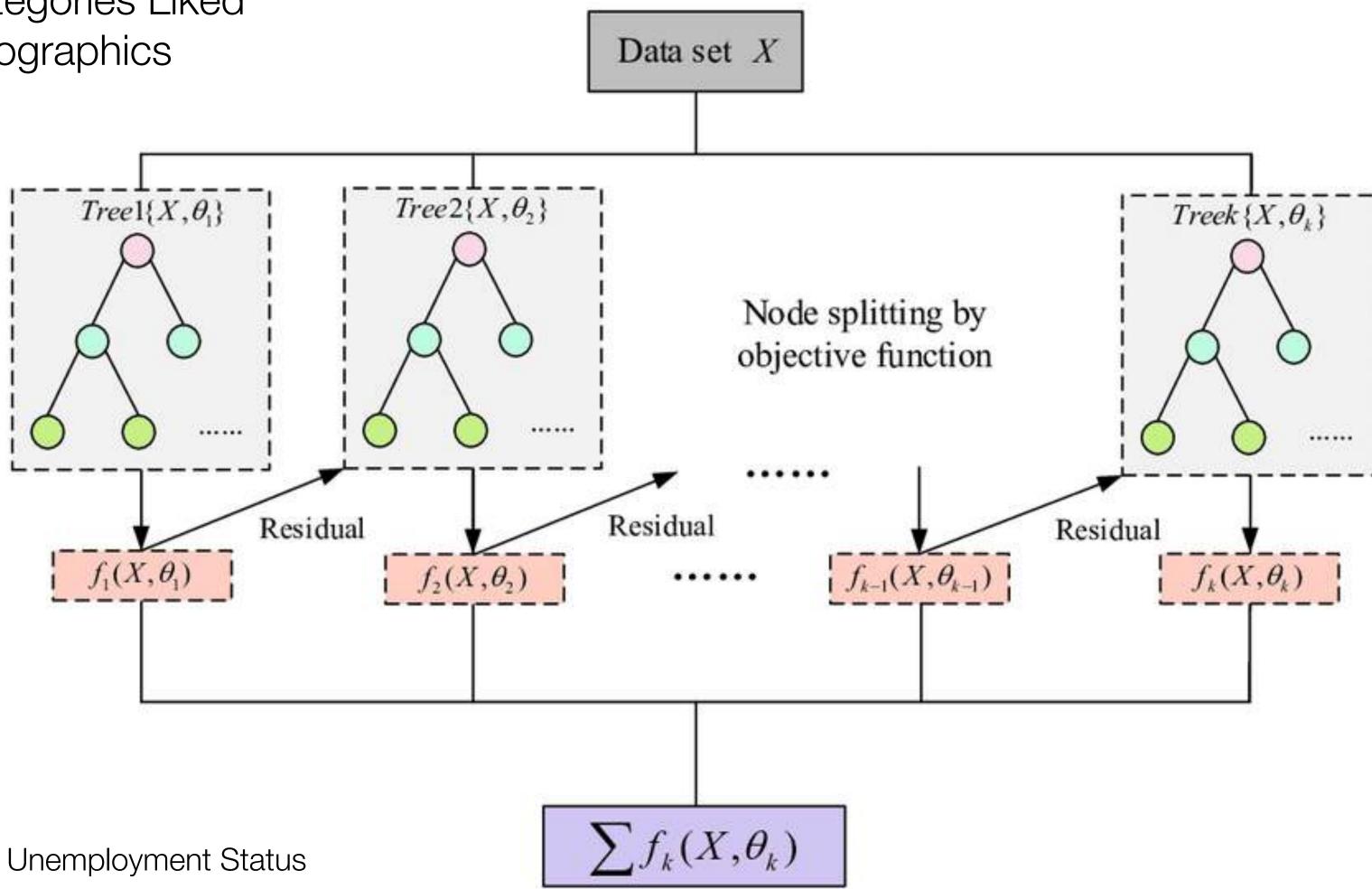


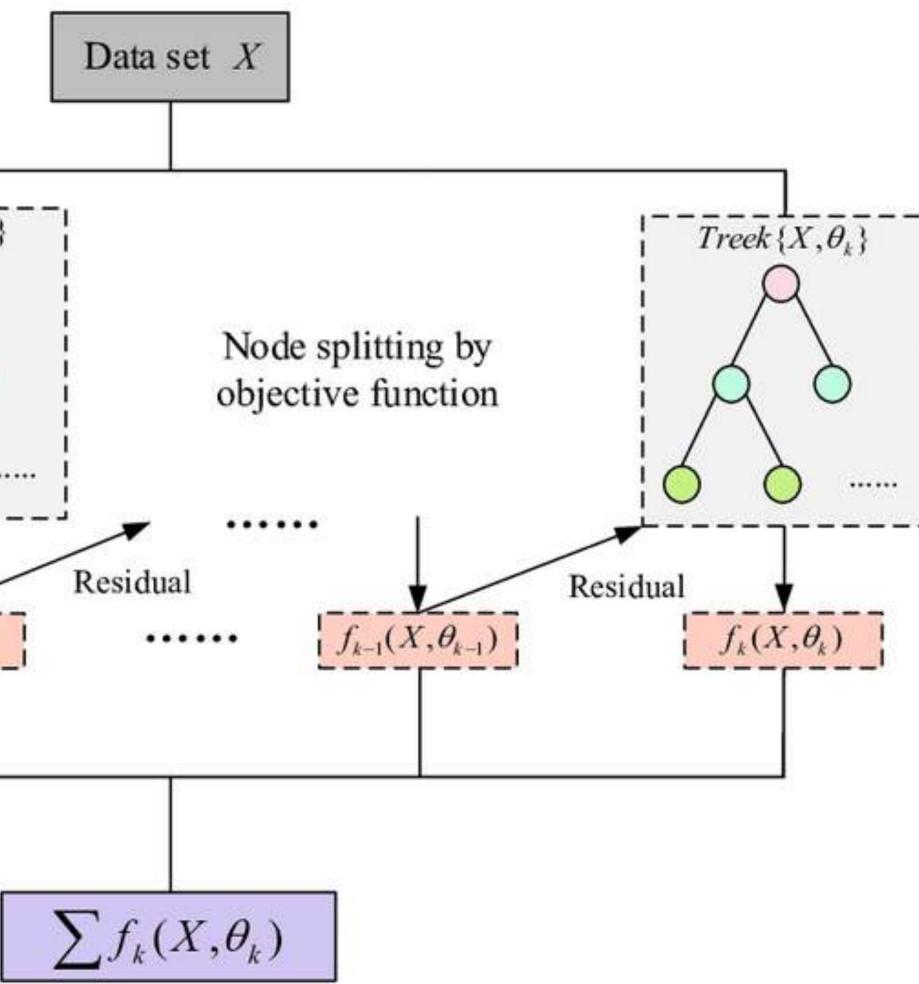
	Census	Dataset n = 11,393
Gender		
Female	51.1%	38.1%
Male	48.4%	61.8%
Age		
17–24	7.9%	43.1%
25–34	11.0%	31.2%
35–44	13.8%	13.6%
45–54	16.1%	7.1%
55–64	13.3%	4.5%
65+	24.5%	0.3%
Occupation		
Employed	77%	43.9%
Unemployed	8.7%	7.4%
Student	14.2%	48.5%

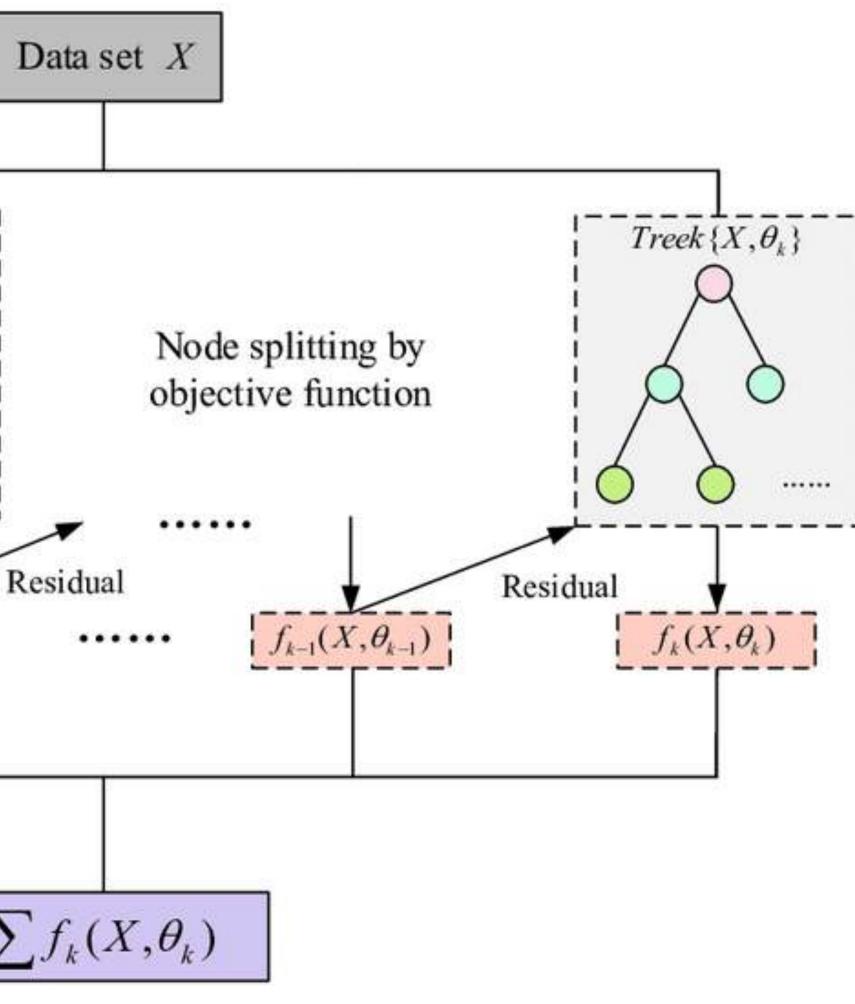
	Census	Dataset n = 11,393
Gender		
Female	51.1%	38.1%
Male	48.4%	61.8%
Age		
17–24	7.9%	43.1%
25–34	11.0%	31.2%
35–44	13.8%	13.6%
45–54	16.1%	7.1%
55–64	13.3%	4.5%
65+	24.5%	0.3%
Occupation		
Employed	77%	43.9%
Unemployed	8.7%	7.4%
Student	14.2%	48.5%

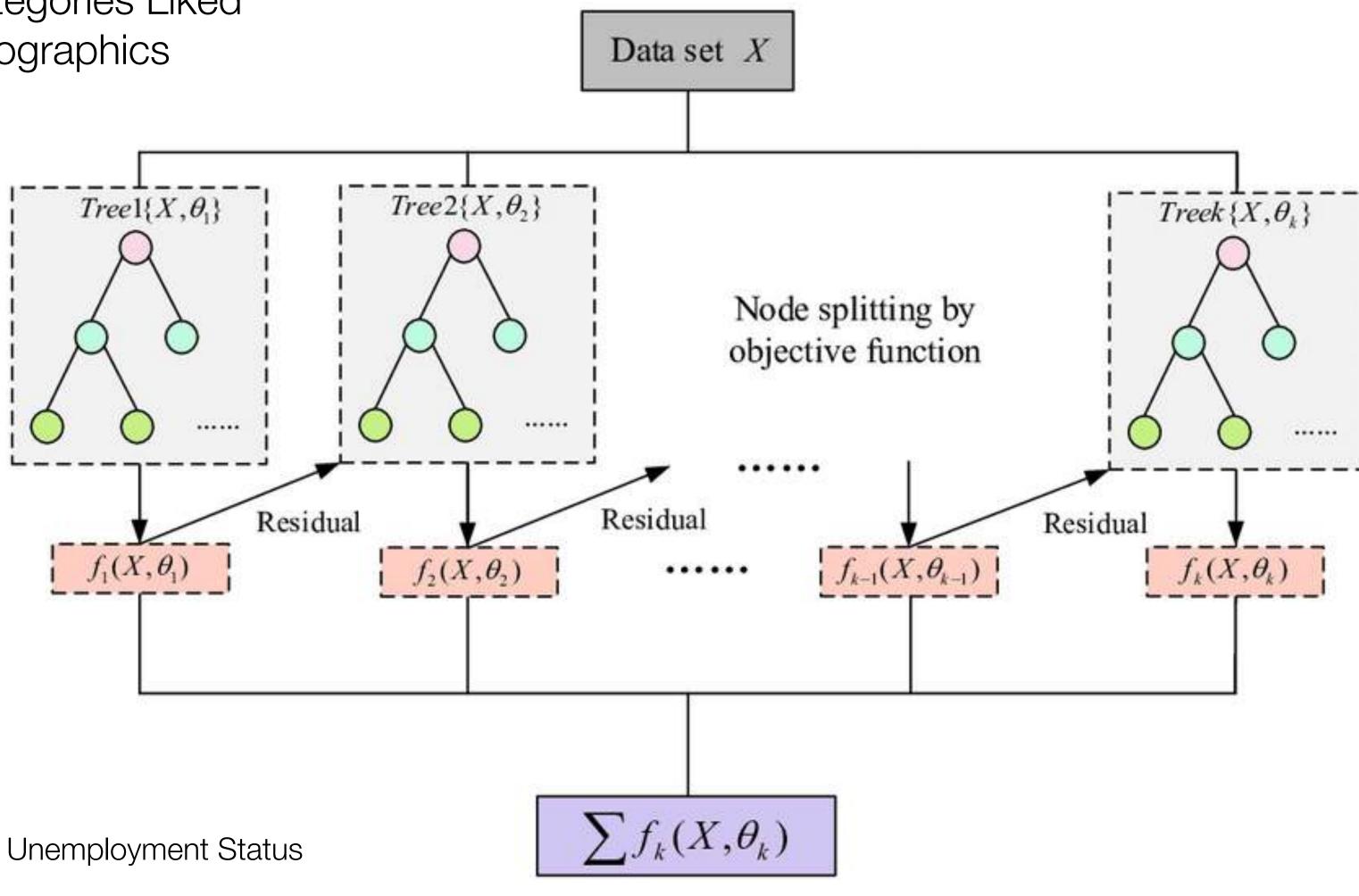
	Census	Dataset
		n = 11,393
Gender		
Female	51.1%	38.1%
Male	48.4%	61.8%
Age		
17–24	Unemployment rate per Gender: Male: 5.5% Female: 9%	43.1%
25–34		31.2%
35–44		13.6%
45–54		7.1%
55–64	13.3%	4.5%
65+	24.5%	0.3%
Occupation		
Employed	77%	43.9%
Unemployed	8.7%	7.4%
Student	14.2%	48.5%

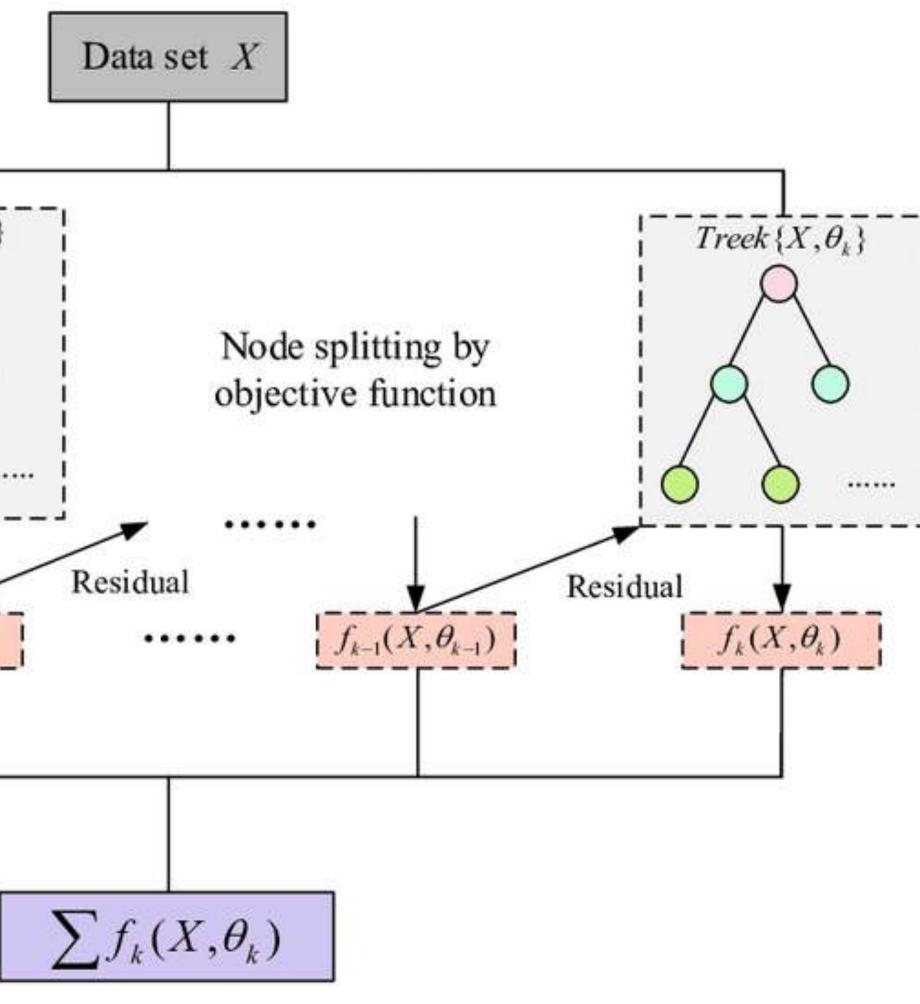












We predict unemployment with 74% AUROC. Cool!

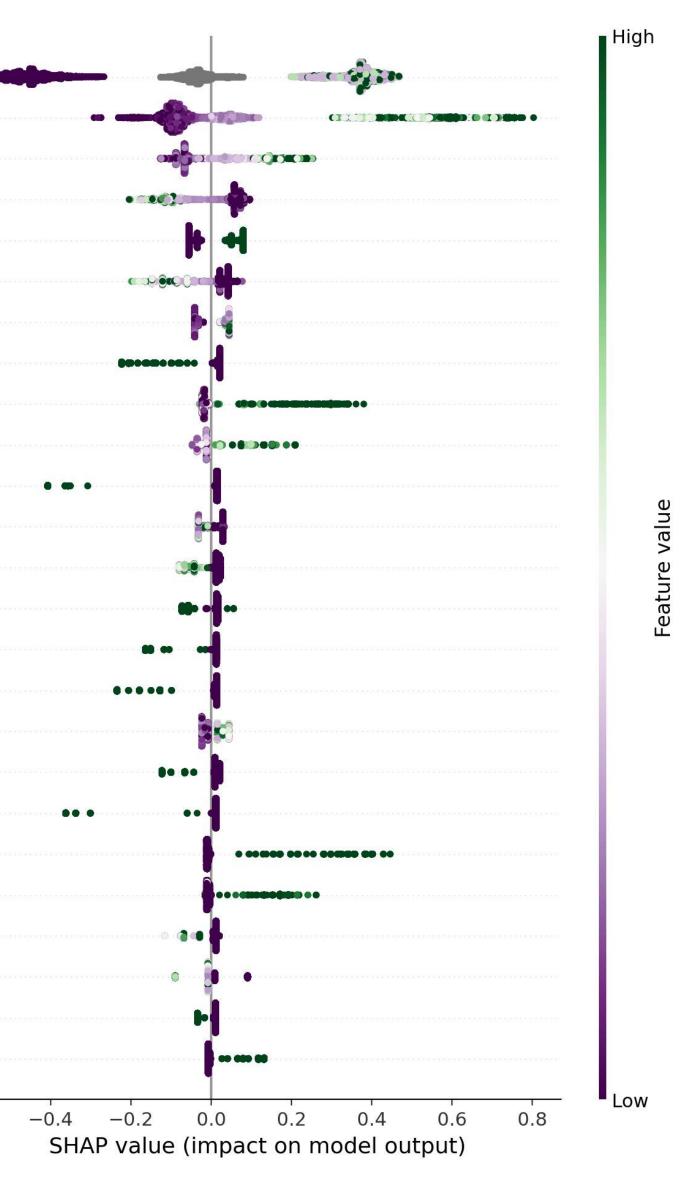
How each model feature contributes to the prediction?

How each model feature contributes to the prediction?

age

age
Health/Beauty (cat.norm.)
App Page (cat.norm.)
University (cat.norm.)
gender
College & University (cat.norm.)
Personal Blog (cat.norm.)
Apostrofare Catilina in (page)
Retail and Consumer Merchandise (cat.norm.)
Public Figure (cat.norm.)
Sei allo scientifico. (page)
Amateur Sports Team (cat.norm.)
High School (cat.norm.)
Matteo Renzi (page)
MIUR Social (page)
1988. (page)
TV Channel (cat.norm.)
Selena Gomez (page)
loStudio - La Carta dello Studente (page)
Cliclavoro (page)
Household Supplies (cat.norm.)
Footwear Store (cat.norm.)
Nonprofit Organization (pop.norm.)
Il Superuovo (page)
Lavoro e Concorsi (page)

-0.6



How each model feature contributes to the prediction?

age

Health/Beauty (cat.norm.)

App Page (cat.norm.)

University (cat.norm.)

gender

College & University (cat.norm.)

Personal Blog (cat.norm.)

Apostrofare Catilina in.. (page)

Retail and Consumer Merchandise (cat.norm.)

Public Figure (cat.norm.)

Sei allo scientifico. (page)

Amateur Sports Team (cat.norm.)

High School (cat.norm.)

Matteo Renzi (page)

MIUR Social (page)

1988. (page)

TV Channel (cat.norm.)

Selena Gomez (page)

loStudio - La Carta dello Studente (page)

Cliclavoro (page)

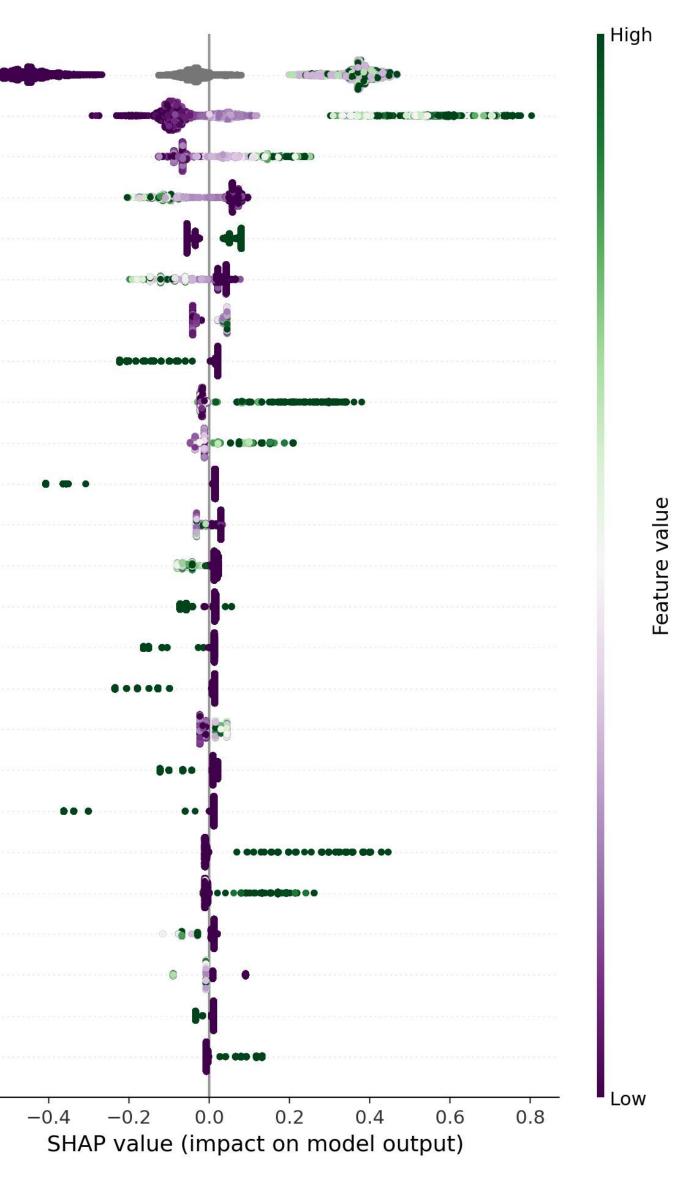
Household Supplies (cat.norm.)

Footwear Store (cat.norm.)

Nonprofit Organization (pop.norm.)

ll Superuovo (page)

Lavoro e Concorsi (page)

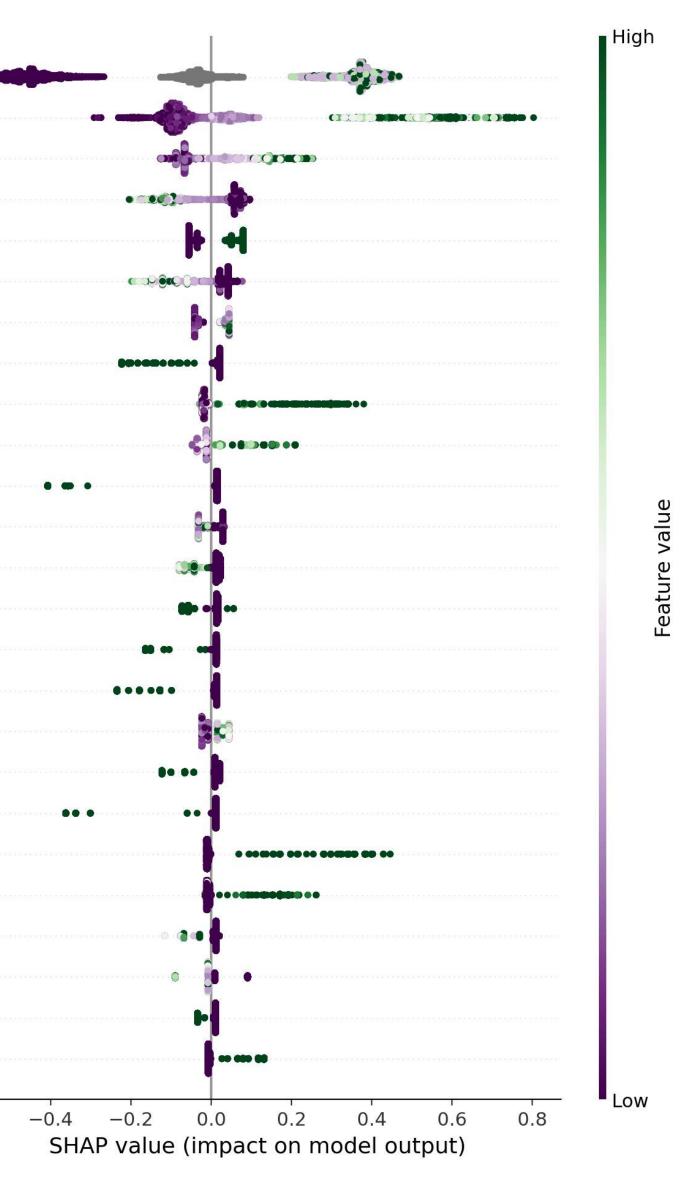


How each model feature contributes to the prediction?

age

age
Health/Beauty (cat.norm.)
App Page (cat.norm.)
University (cat.norm.)
gender
College & University (cat.norm.)
Personal Blog (cat.norm.)
Apostrofare Catilina in (page)
Retail and Consumer Merchandise (cat.norm.)
Public Figure (cat.norm.)
Sei allo scientifico. (page)
Amateur Sports Team (cat.norm.)
High School (cat.norm.)
Matteo Renzi (page)
MIUR Social (page)
1988. (page)
TV Channel (cat.norm.)
Selena Gomez (page)
loStudio - La Carta dello Studente (page)
Cliclavoro (page)
Household Supplies (cat.norm.)
Footwear Store (cat.norm.)
Nonprofit Organization (pop.norm.)
Il Superuovo (page)
Lavoro e Concorsi (page)

-0.6

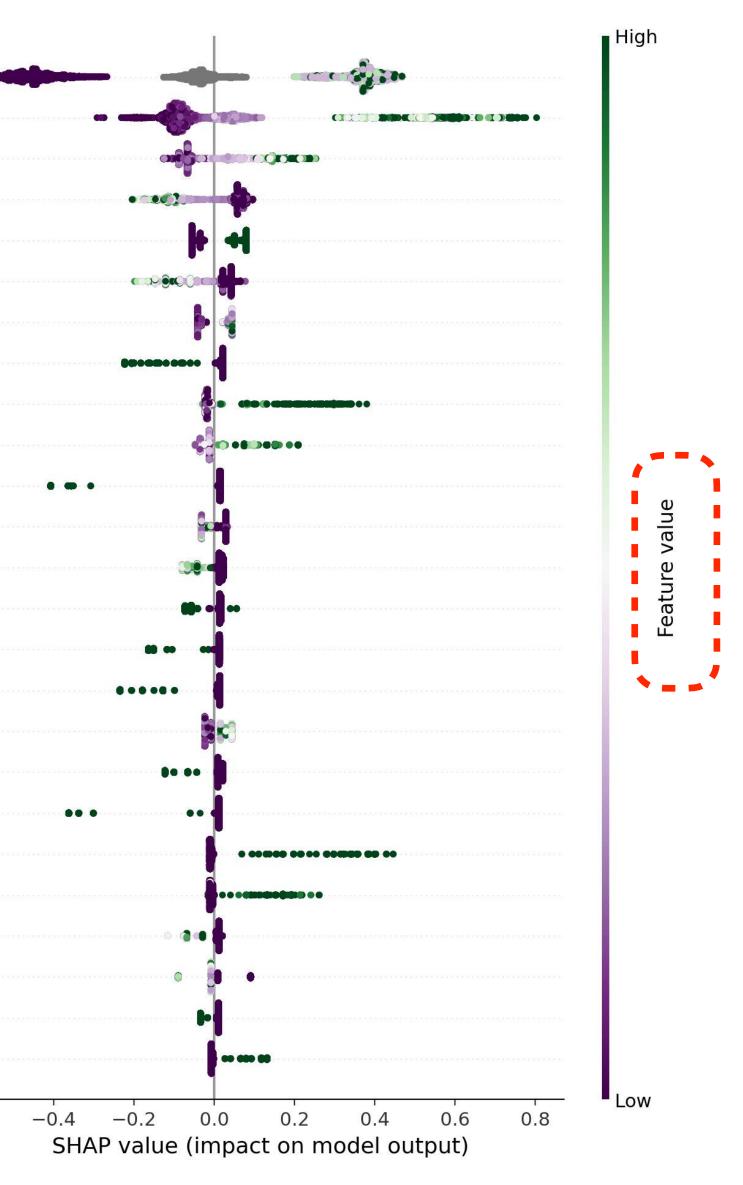


How each model feature contributes to the prediction?

age

age
Health/Beauty (cat.norm.)
App Page (cat.norm.)
University (cat.norm.)
gender
College & University (cat.norm.)
Personal Blog (cat.norm.)
Apostrofare Catilina in (page)
Retail and Consumer Merchandise (cat.norm.)
Public Figure (cat.norm.)
Sei allo scientifico. (page)
Amateur Sports Team (cat.norm.)
High School (cat.norm.)
Matteo Renzi (page)
MIUR Social (page)
1988. (page)
TV Channel (cat.norm.)
Selena Gomez (page)
loStudio - La Carta dello Studente (page)
Cliclavoro (page)
Household Supplies (cat.norm.)
Footwear Store (cat.norm.)
Nonprofit Organization (pop.norm.)
Il Superuovo (page)
Lavoro e Concorsi (page)

-0.6

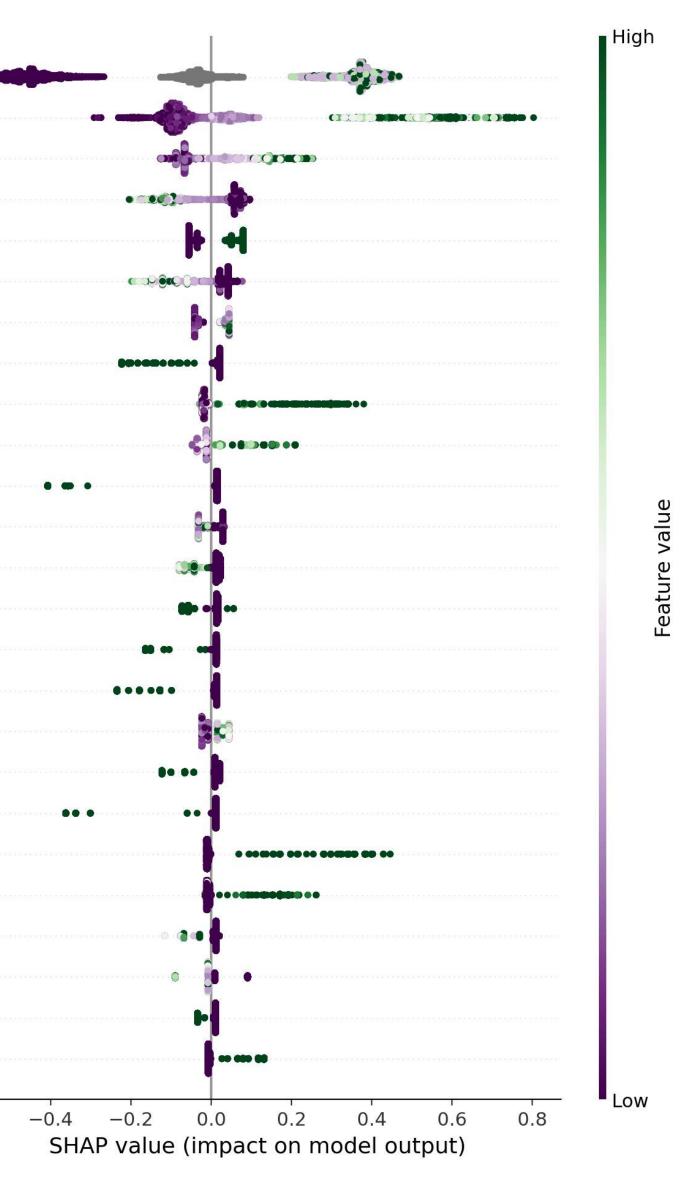


How each model feature contributes to the prediction?

age

age
Health/Beauty (cat.norm.)
App Page (cat.norm.)
University (cat.norm.)
gender
College & University (cat.norm.)
Personal Blog (cat.norm.)
Apostrofare Catilina in (page)
Retail and Consumer Merchandise (cat.norm.)
Public Figure (cat.norm.)
Sei allo scientifico. (page)
Amateur Sports Team (cat.norm.)
High School (cat.norm.)
Matteo Renzi (page)
MIUR Social (page)
1988. (page)
TV Channel (cat.norm.)
Selena Gomez (page)
loStudio - La Carta dello Studente (page)
Cliclavoro (page)
Household Supplies (cat.norm.)
Footwear Store (cat.norm.)
Nonprofit Organization (pop.norm.)
Il Superuovo (page)
Lavoro e Concorsi (page)

-0.6



age

Health/Beauty (cat.norm.)

App Page (cat.norm.)

University (cat.norm.)

gender

College & University (cat.norm.)

Personal Blog (cat.norm.)

Apostrofare Catilina in.. (page)

Retail and Consumer Merchandise (cat.norm.)

Public Figure (cat.norm.)

Sei allo scientifico. (page)

Amateur Sports Team (cat.norm.)

High School (cat.norm.)

Matteo Renzi (page)

MIUR Social (page)

1988. (page)

TV Channel (cat.norm.)

Selena Gomez (page)

loStudio - La Carta dello Studente (page)

Cliclavoro (page)

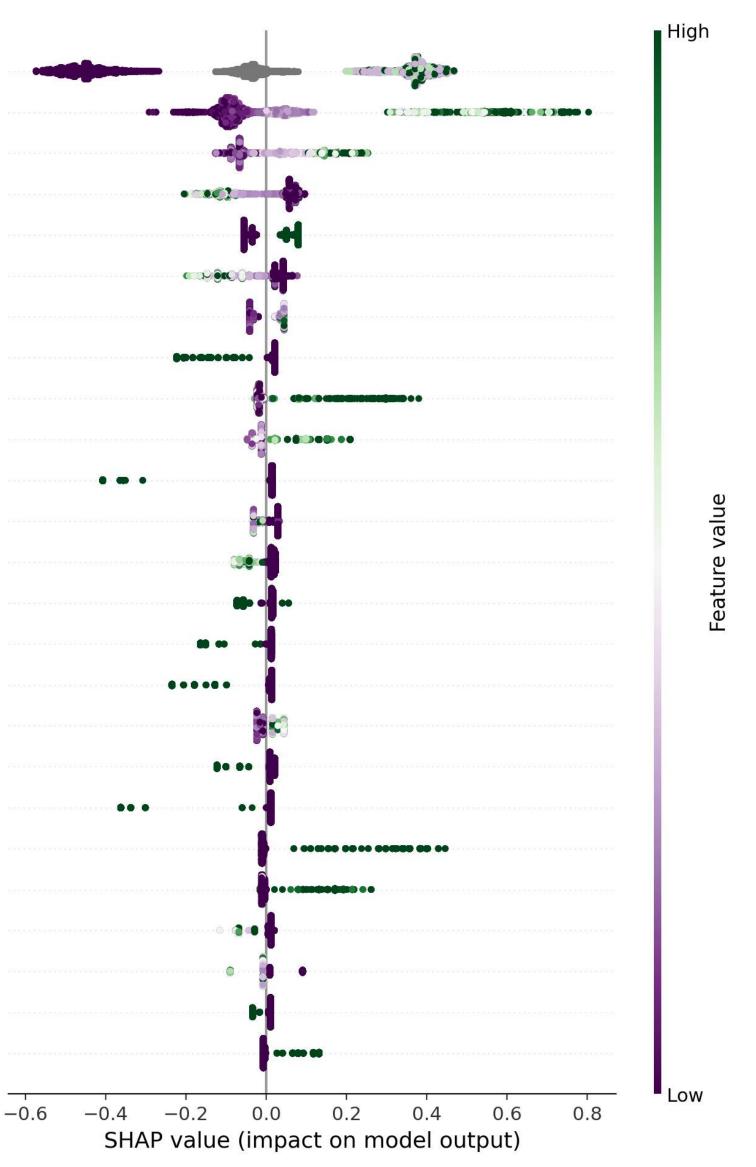
Household Supplies (cat.norm.)

Footwear Store (cat.norm.)

Nonprofit Organization (pop.norm.)

ll Superuovo (page)

Lavoro e Concorsi (page)



Health/Beauty (cat.norm.) App Page (cat.norm.) University (cat.norm.)

age

age

Health/Beauty (cat.norm.)

App Page (cat.norm.)

University (cat.norm.)

gender

College & University (cat.norm.)

Personal Blog (cat.norm.)

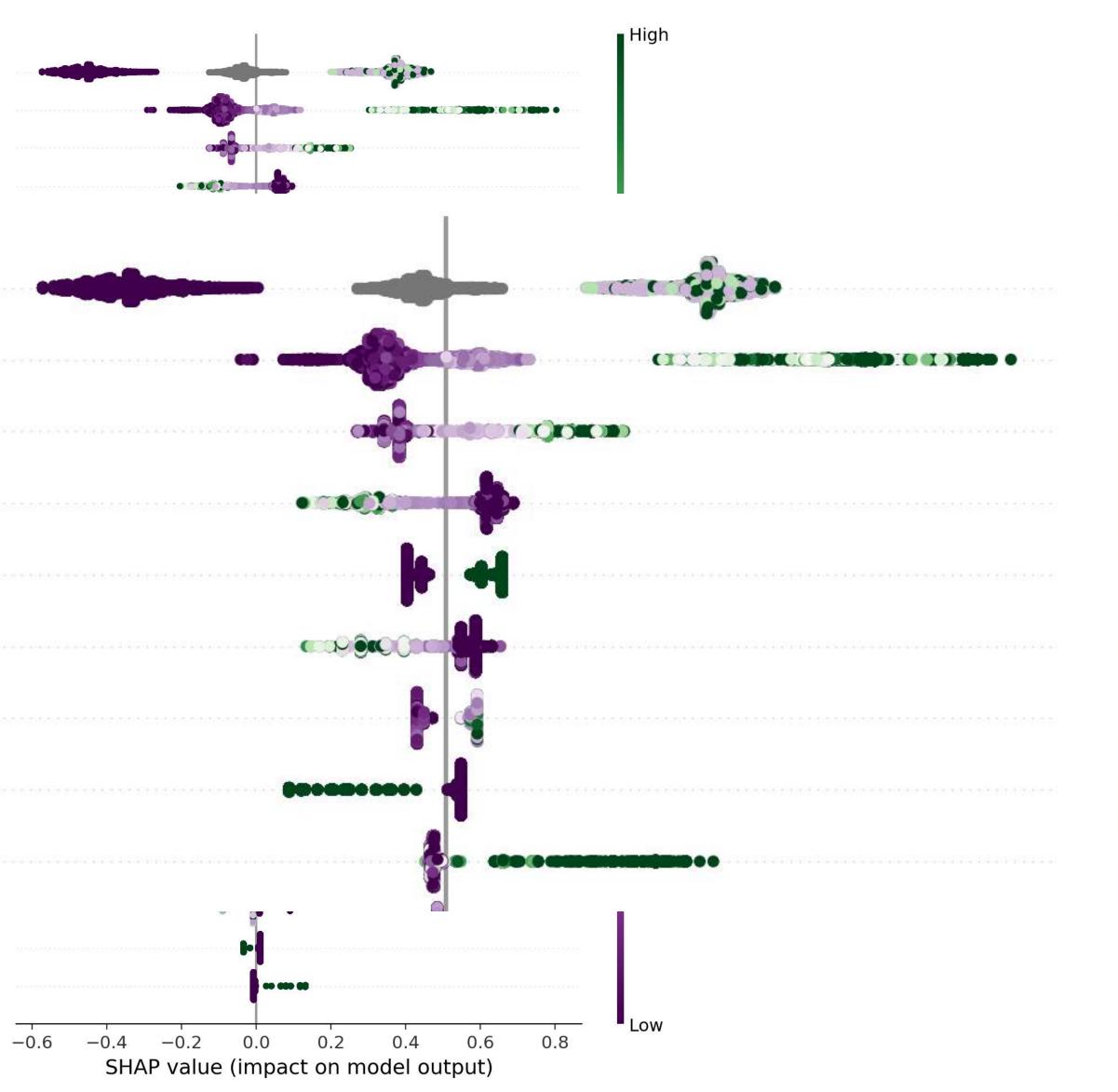
Apostrofare Catilina in.. (page)

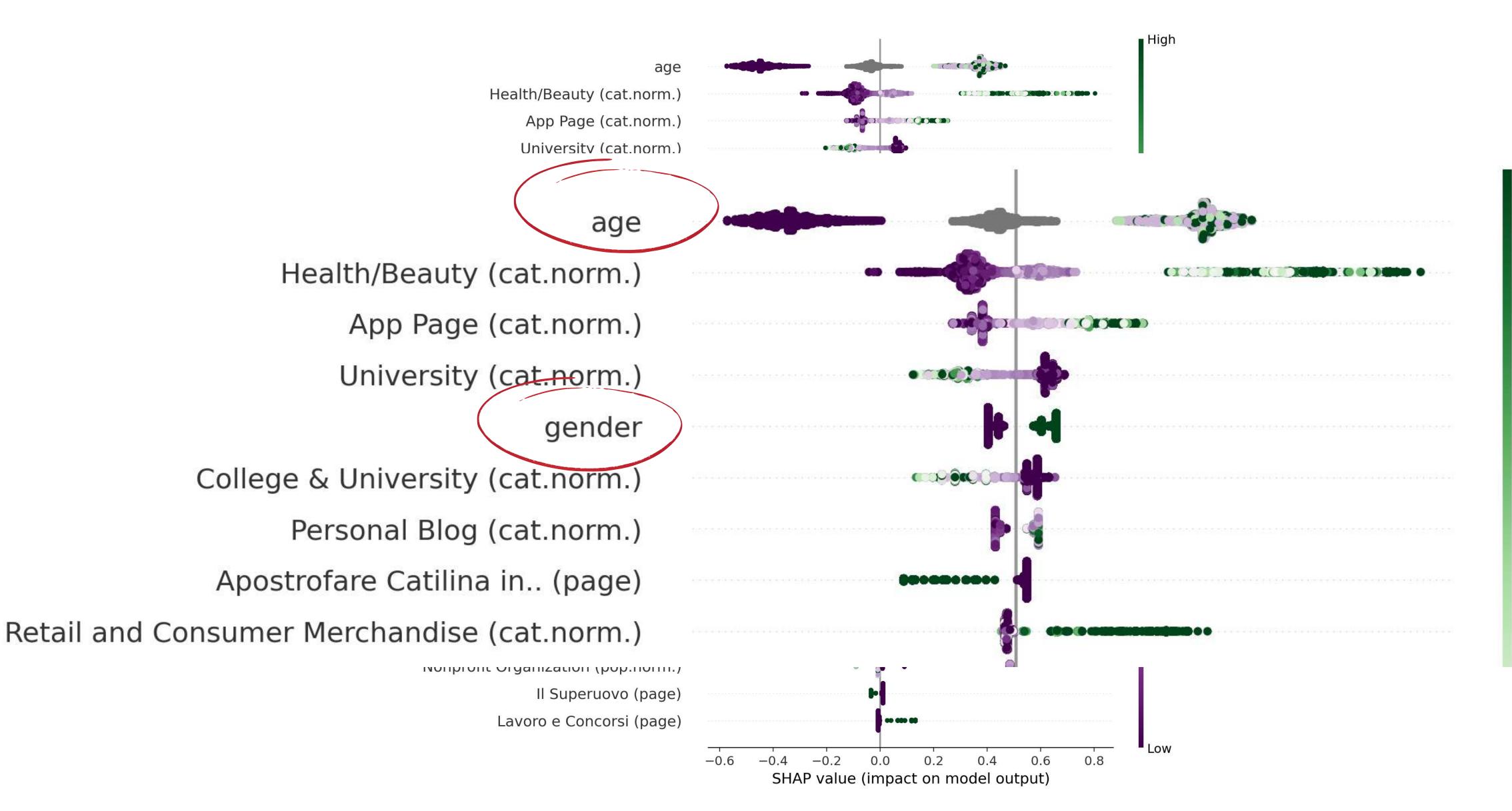
Retail and Consumer Merchandise (cat.norm.)

NUMPIONE OF GAME ALION (POP.NOM.)

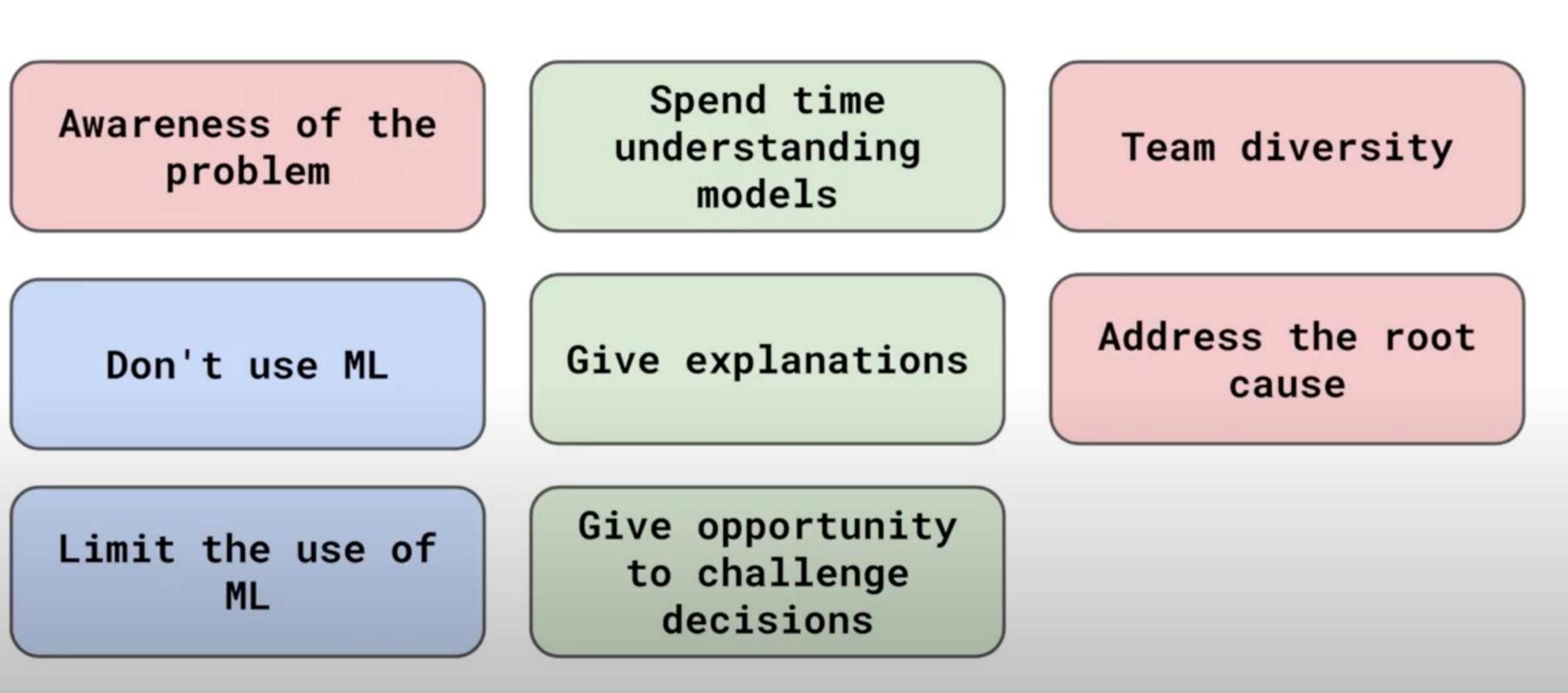
Il Superuovo (page)

Lavoro e Concorsi (page)





Non Quantitative Approaches

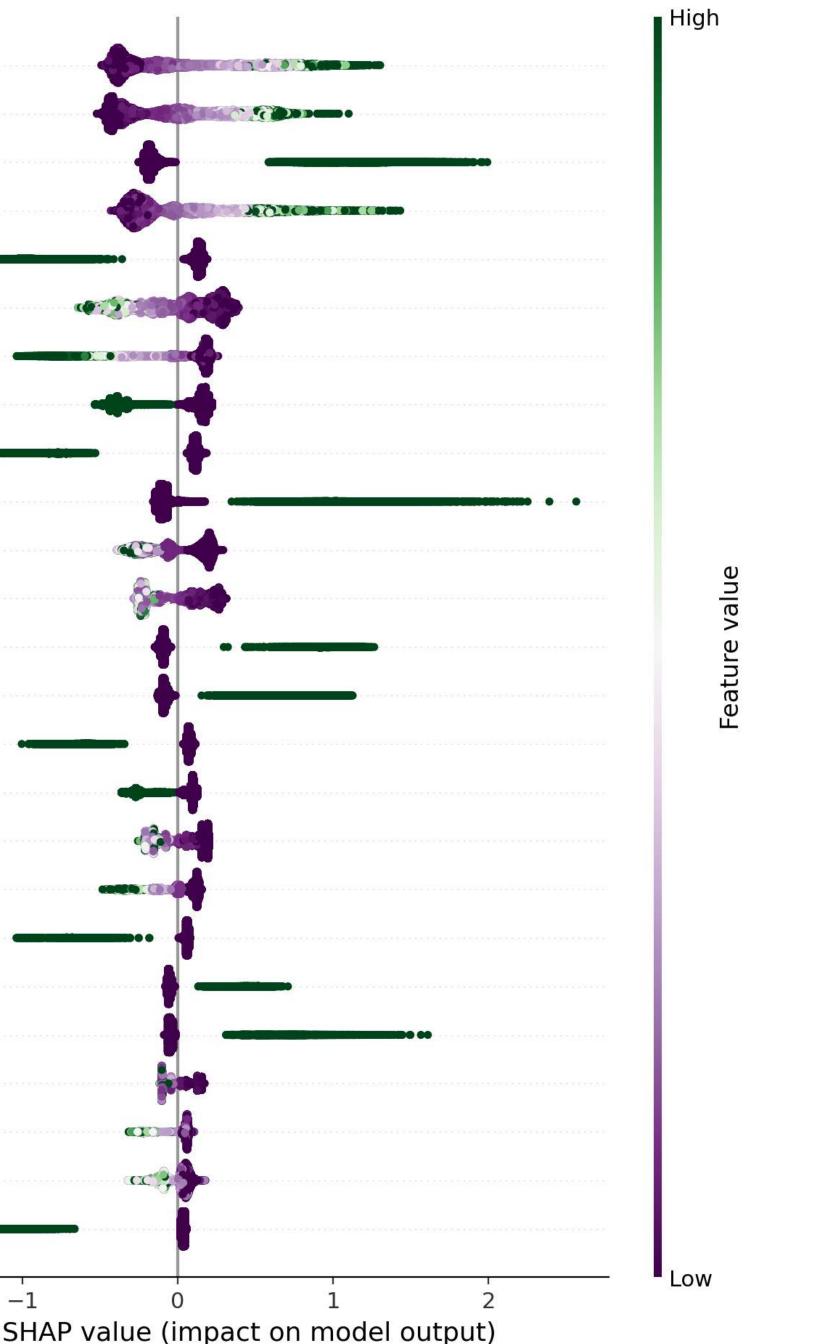


Quantitative Approaches

Modify data before training

Health/Beauty (cat.norm.) Clothing (cat.norm.) Freeda (page) Writer (cat.norm.) Dan Bilzerian (page) Politician (cat.norm.) Cars (cat.norm.) CALCIATORI BRUTTI (page) Diletta Leotta (page) ClioMakeup fun page (page) Video Game (page) Sports Team (cat.norm.) Kiko Milano (page) Gordon (page) Sony PlayStation Italia (page) Gli Autogol (page) Sports League (cat.norm.) Cars (page) Fantagazzetta (page) Alpha Woman (page) ROBA DA DONNE (page) Sports Team (page) Video Game (cat.norm.) Journalist (cat.norm.) Gillette Italia (page)

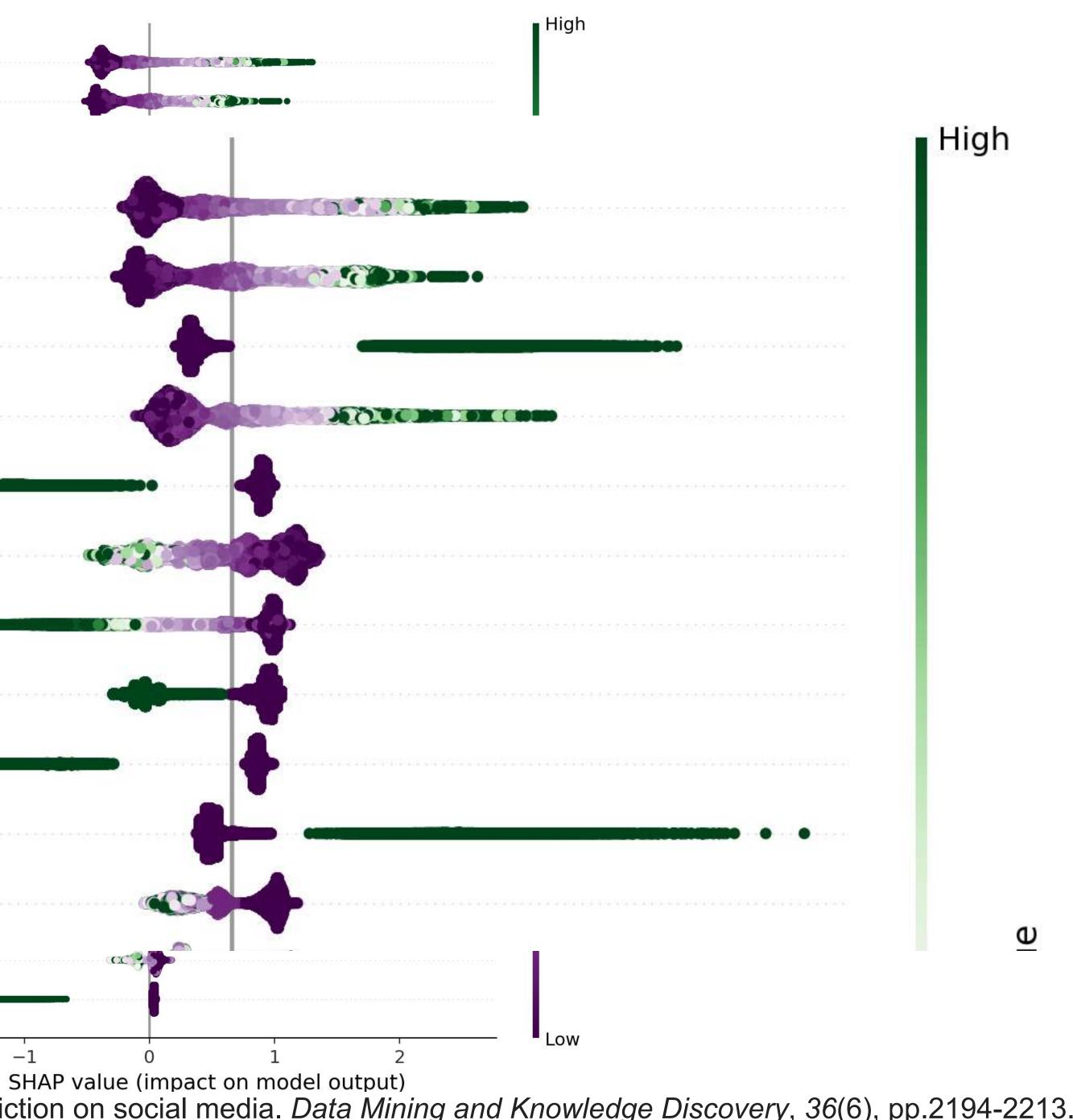
SHAP value (impact on model output) Beiró, M.G. and Kalimeri, K., 2022. Fairness in vulnerable attribute prediction on social media. Data Mining and Knowledge Discovery, 36(6), pp.2194-2213.



Health/Beauty (cat.norm.) Clothing (cat.norm.)

Health/Beauty (cat.norm.) Clothing (cat.norm.) Freeda (page) Writer (cat.norm.) Dan Bilzerian (page) Politician (cat.norm.) Cars (cat.norm.) CALCIATORI BRUTTI (page) Diletta Leotta (page) ClioMakeup fun page (page) Video Game (page)

Journalist (cat.norm.) Gillette Italia (page)



Health/Beauty (cat.norm.) Clothing (cat.norm.)

Health/Beauty (cat.norm.)

Clothing (cat.norm.)

Writer (cat.norm.)

Freeda (page)

Dan Bilzerian (page)

Politician (cat.norm.)

Cars (cat.norm.)

CALCIATORI BRUTTI (page)

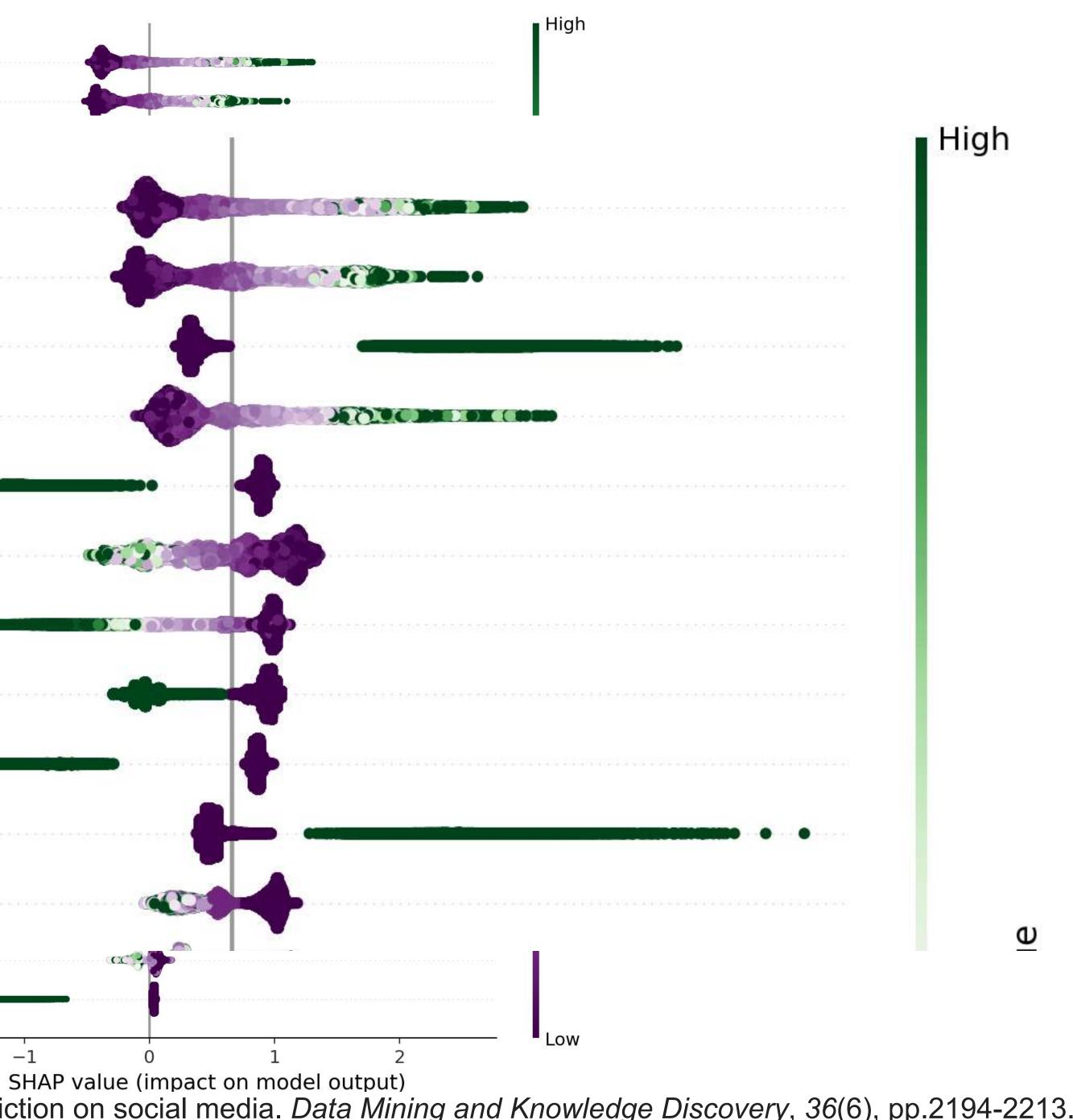
Diletta Leotta (page)

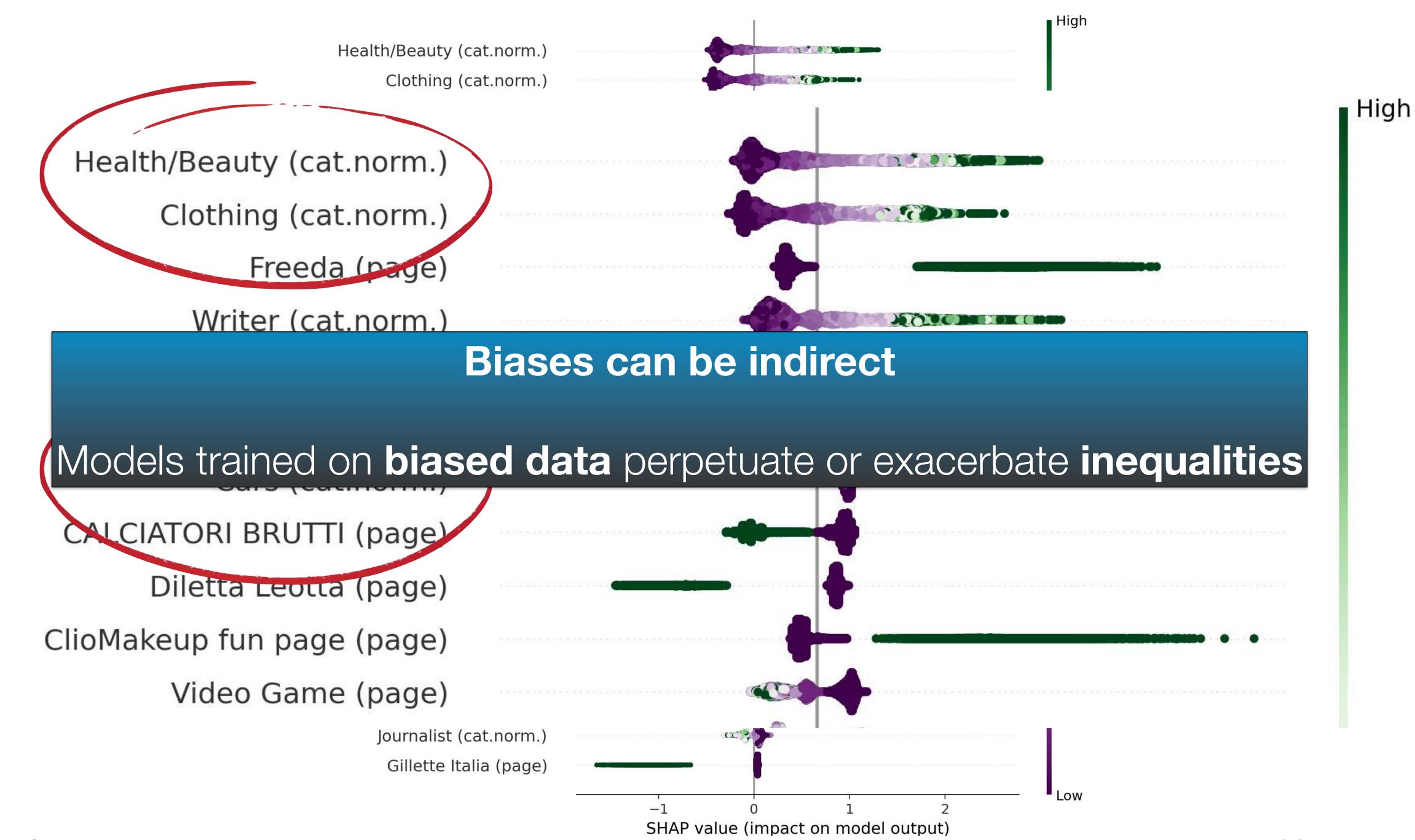
ClioMakeup fun page (page)

Video Game (page)

Journalist (cat.norm.)

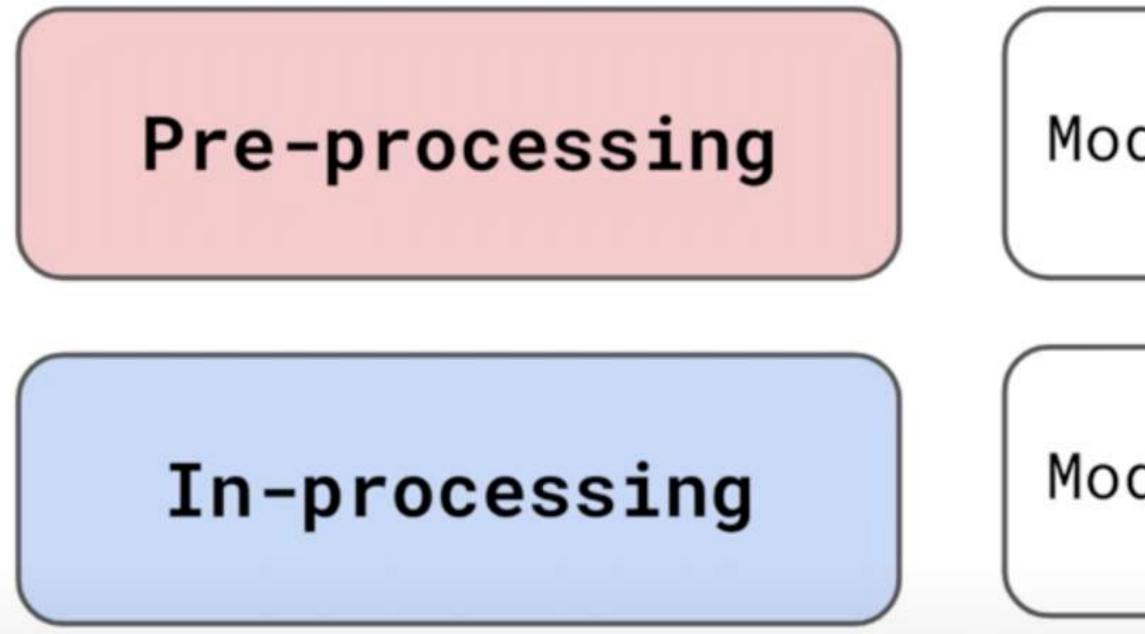
Gillette Italia (page)





e

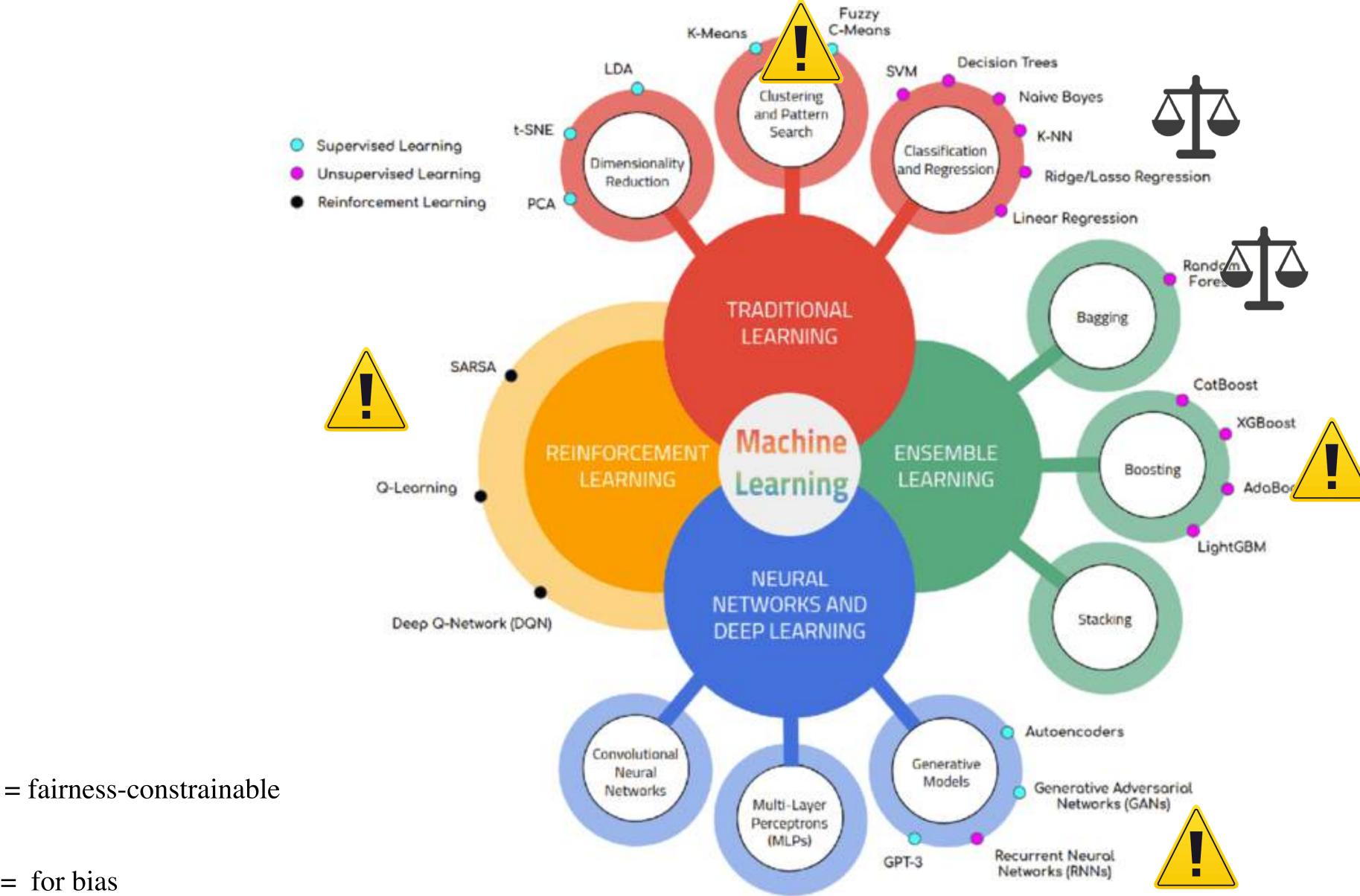
Quantitative Approaches



Modify data before training

Modify algorithm that is trained

Which models are most appropriate when data are scarce, noisy or sensitive?

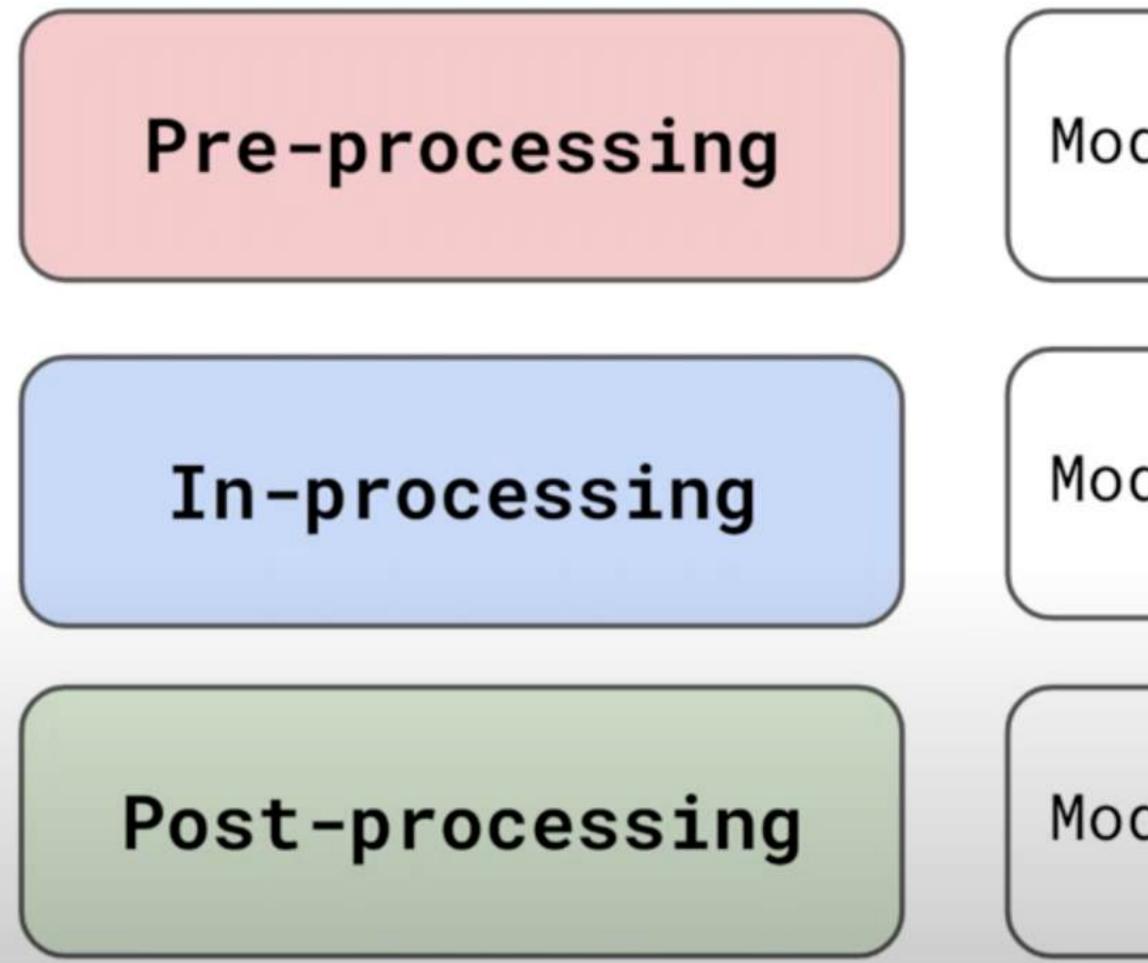


 \square

=

for bias

Quantitative Approaches

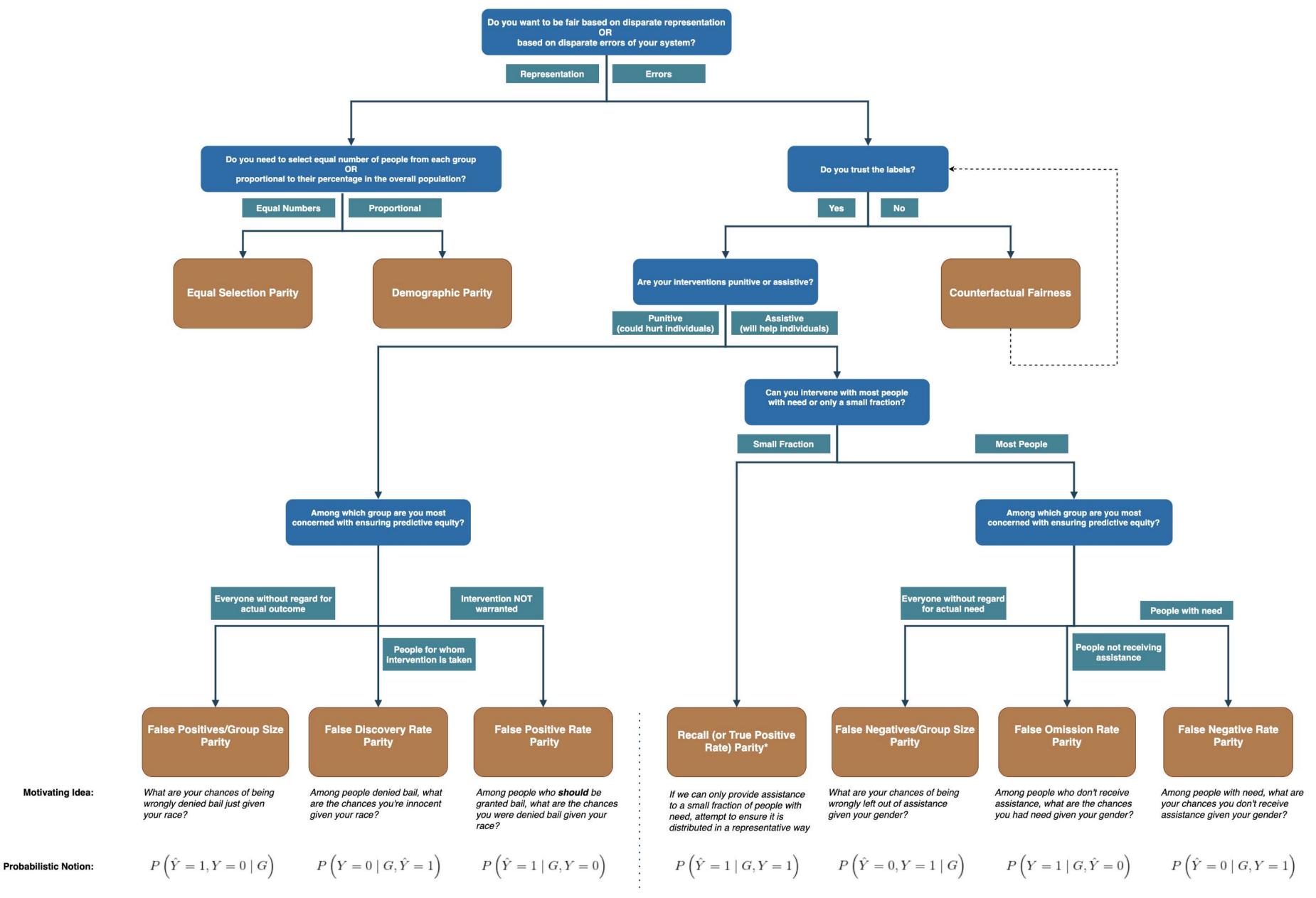


Modify data before training

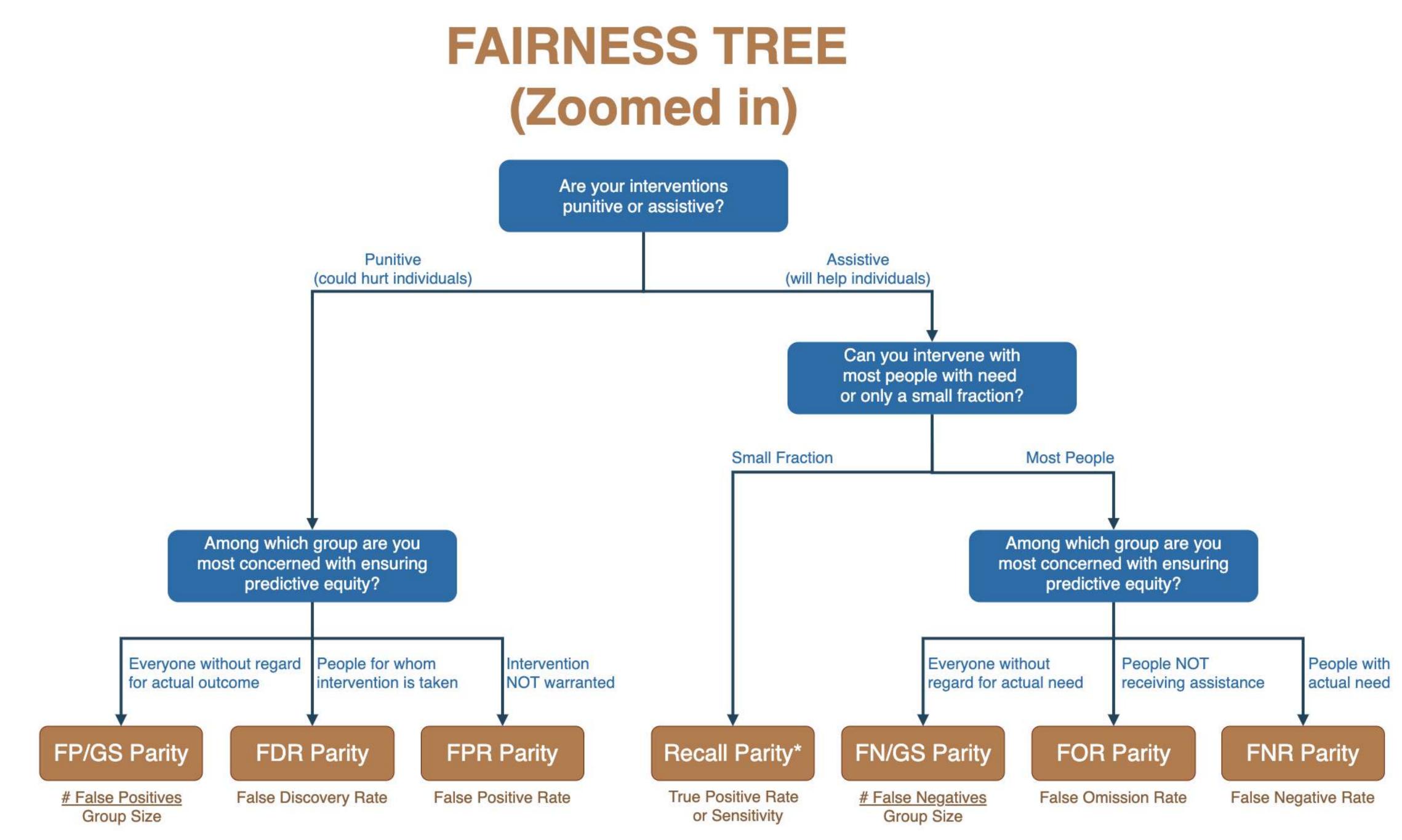
Modify algorithm that is trained

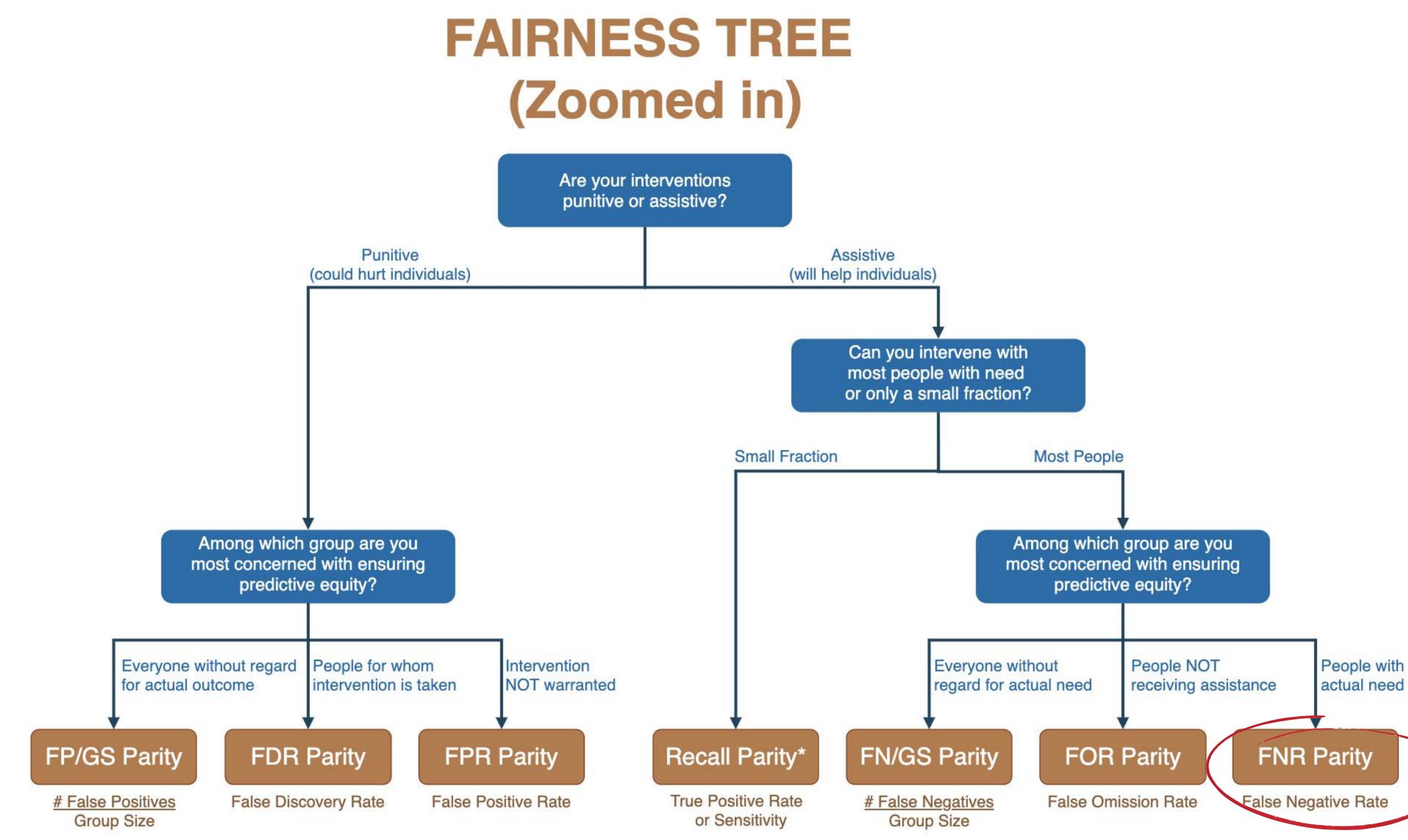
Modify predictions of model

FAIRNESS TREE

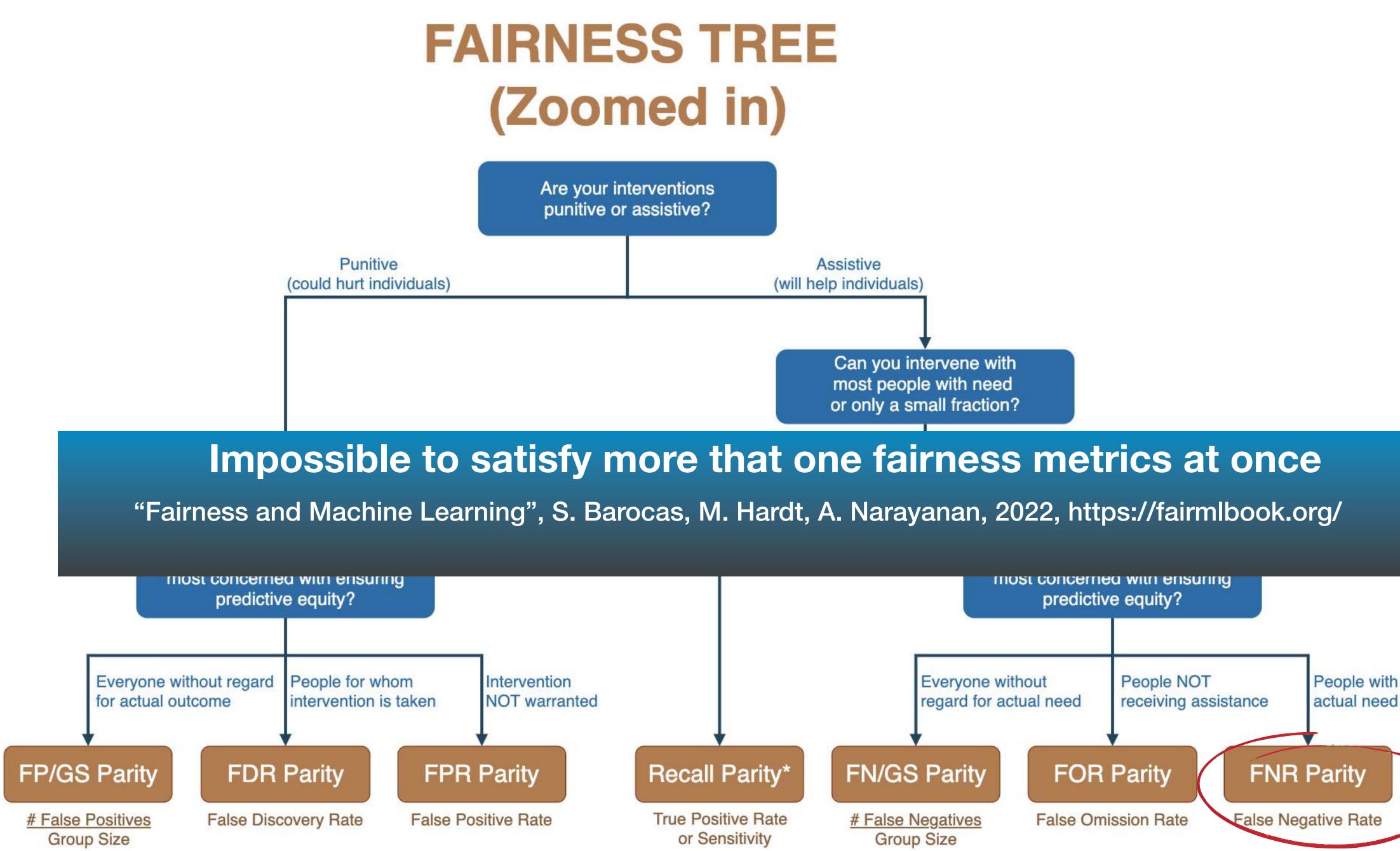


Pedro Saleiro, Benedict Kuester, Abby Stevens, Ari Anisfeld, Loren Hinkson, Jesse London, Rayid Ghani, Aequitas: A Bias and Fairness Audit Toolkit, arXiv preprint arXiv:1811.05577 (2018)





Punitive



Parity of Opportunity (FNR Parity)

$$FNR_g \text{ disp.} = \frac{FNR_g}{FNR_{ref.g}}$$
$$= \frac{Pr[\hat{Y}]}{Pr[\hat{Y}=0]}$$

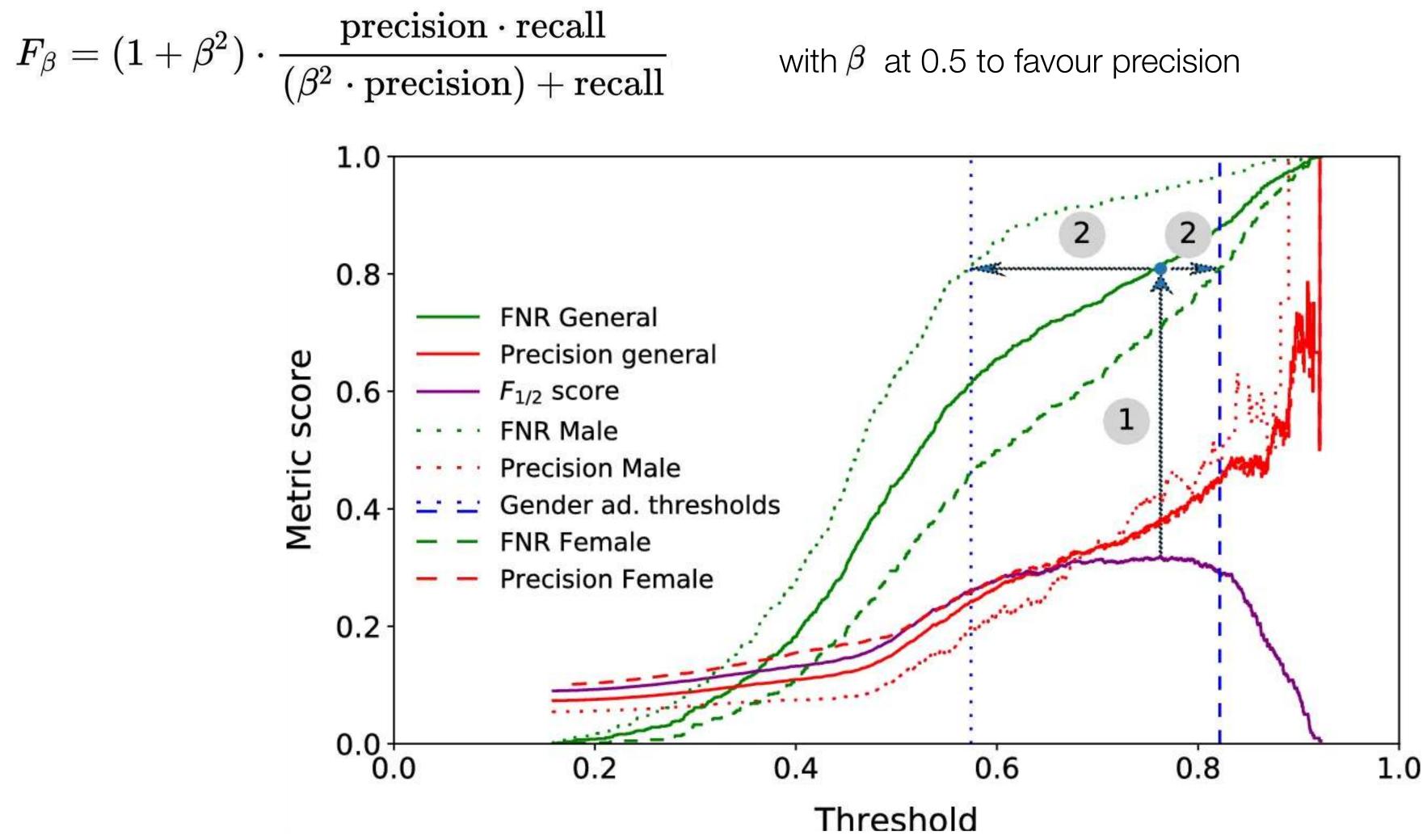
where Y and \hat{Y} represent the real and predicted target values respectively ("1" represents the unemployed, "0" the employed)

Pragmatic Compromise - '80% Rule' - disparity threshold with respect to the reference group

group

 $\hat{Y} = 0|Y = 1 \land G = g]$ $0|Y = 1 \land G = ref.group]$

Adaptive Threshold



Baeza-Yates R, Ribeiro-Neto B et al (1999) Modern Information Retrieval, vol 463. ACMPress, New York

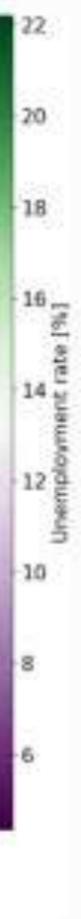
	Demo	NoDemo	Demo+AT.	NoDemo+AT.	
Global Accuracy (Metric: AUC	C(std))				
Baseline	.50	.50	.50	.50	
State of the Art	_	.61(.01) (*)			
Our Approach	.74(.02)	.71(.02)	.74(.02)	.71(.02)	
Precision and Recall					
Precision	.16(.02)	.18(.01)	.26(.05)	.25(.03)	
Recall	.56(.05)	.48(.02)	.21(.05)	.22(.04)	
Demographic accuracy (Metri	ic: AUC(std))				
Gender (M)	.66(.05)	.64(.04)	.66(.05)	.64(.04)	
Gender (F)	.78(.02)	.76(.02)	.78(.02)	.76(.02)	
Age (17-24)	.70(.08)	.69(.08)	.70(.08)	.69(.08)	
Age (25-34)	.66(.05)	.65(.05)	.66(.05)	.65(.05)	
Age (35-44)	.74(.09)	.73(.08)	.74(.09)	.73(.08)	
Age (45-54)	.61(.17)	.54(.16)	.61(.17)	.54(.16)	
Age (55+)	.46(.31)	.46(.29)	.46(.31)	.46(.29)	
Fairness (Metric: $\frac{FNR}{FNR_{ref}}$)					
Gender (ref.class: Male)					
Female	.47(.11)	.58(.14)	1.0(.07)	1.02(.14)	
Age (ref.class: 17–24)					
25-34	.35(.08)	.62(.12)	.75(.09)	.80(.08)	
35-44	.26(.12)	.49(.2)	.71(.09)	.73(.1)	
45-54	.41(.24)	.82(.35)	.82(.17)	.84(.19)	
55+	.59(.36)	.99(.42)	.82(.18)	.91(.19)	

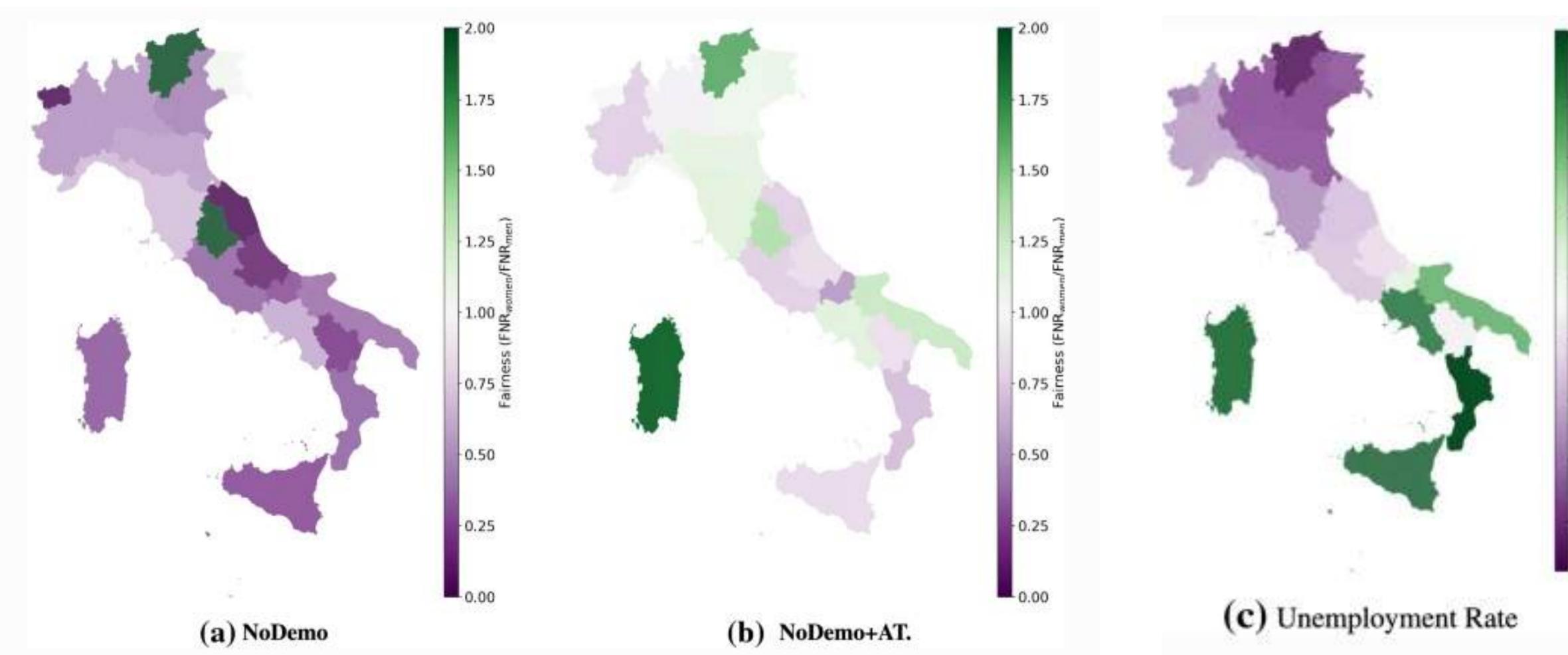
	Demo	NoDemo	Demo+AT.	NoDemo+AT.		
Global Accuracy (Metric: AU	IC(std))					
Baseline	.50	.50	.50	.50		
State of the Art	_	.61(.01) (*)				
Our Approach	.74(.02)	.71(.02) .74(.02)		.71(.02)		
Precision and Recall						
Precision	.16(.02)	.18(.01)	.26(.05)	.25(.03)		
Recall	.56(.05)	.48(.02)	.21(.05)	.22(.04)		
Demographic accuracy (Met	tric: AUC(std))					
Gender (M)	.66(.05)	.64(.04)	.66(.05)	.64(.04)		
Gender (F)	.78(.02)	.76(.02)	.78(.02)	.76(.02)		
der (ref.class: Male)						
der (ref.class: Male) ale	.47(.11)	.58(.	14)	1.0(.07)	1.02(
ale 	.01(.17)				1.02(
ale Age (55+)					1.02(
ale 	.01(.17)				1.02(
ale Age (55+)	.01(.17)				1.02(
Age (55+) Fairness (Metric: $\frac{FNR}{FNR_{ref}}$)	.01(.17)				1.02(
Age (55+) Fairness (Metric: $\frac{FNR}{FNR_{ref}}$) Gender (ref.class: Male)	.46(.31)	.46(.29)	.46(.31)	.46(.29)	1.02(
Age (55+) Fairness (Metric: $\frac{FNR}{FNR_{ref}}$) Gender (ref.class: Male) Female	.46(.31)	.46(.29)	.46(.31)	.46(.29)		
Age (55+) <i>Fairness (Metric:</i> <u>FNR</u> <i>Forder (ref.class: Male)</i> Female Age (ref.class: 17–24)	.46(.31) .47(.11)	.46(.29)		1.01(.10) .46(.29) 1.02(.14)		
Age (55+) <i>Fairness (Metric:</i> <u>FNR</u> <i>FNR</i> _{ref}) Gender (ref.class: Male) Female Age (ref.class: 17–24) 25-34	.46(.31) .47(.11) .35(.08)	.58(.14) .62(.12)		.46(.29) 1.02(.14) .80(.08)		

	Demo	NoDemo	Demo+AT.	NoDemo+AT.	
Global Accuracy (Metric: AU	C(std))				
Baseline	.50 .50		.50	.50	
State of the Art		61(.01) (*) -		<u> </u>	
Our Approach	.74(.02)	.71(.02)	.74(.02)	.71(.02)	
Our Approach	roach .74(.02)		.71(.02)	.74(.02)	.71(.02)
Precision and Recall					
recision	.16(.02)		.18(.01)	.26(.05)	.25(.03)
Recall	.56(.05)		.48(.02)	.21(.05)	.22(.04)
Ochder (F)		./0(.02)	./0(.02)		
Gender (ref.class: Male)					
emale	.47(.11)		.58(.14)	1.0(.07)	1.02(.14)
, igo (10 0 1)		.0-1(.10)	101(117)	10-1(110)	
Age (55+)	.46(.31)	.46(.29)	.46(.31)	.46(.29)	
Fairness (Metric: $\frac{FNR}{FNR_{ref}}$)					
Gender (ref.class: Male)					
Female	.47(.11)	.58(.14)	1.0(.07)	1.02(.14)	
Age (ref.class: 17–24)					
25-34	.35(.08)	.62(.12)	.75(.09)	.80(.08)	
35-44	.26(.12)	.49(.2)	.71(.09)	.73(.1)	
45-54	.41(.24)	.82(.35)	.82(.17)	.84(.19)	
55+	.59(.36)	.99(.42)	.82(.18)	.91(.19)	

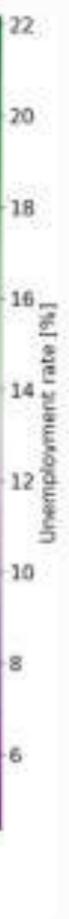
	Demo	NoDemo	Demo+AT.	NoDemo+AT.	
Global Accuracy (Metric: AUG	C(std))				
Baseline	.50	.50	.50	.50	
State of the Art	-	.61(.01) (*)			
Our Approach	.74(.02)	.71(.02)	.74(.02)	.71(.02)	
ur Approach	.74(.02)		.71(.02)	.74(.02)	.71(.02)
recision and Recall					
recision	.16(.02)		.18(.01)	.26(.05)	.25(.03)
ecall	.56(.05)		.48(.02)	.21(.05)	.22(.04)
	./0(.02)	./0(.02)	./0(.02)	.//0(.02)	
ender (ref.class: Male)					
emale	.47(.11)		.58(.14)	1.0(.07)	1.02(.14
//go (40 04)	.0.(,	.0-1(.1.07		.0-1(.10)	
Age (55+)	.46(.31)	.46(.29)	.46(.31)	.46(.29)	
Fairness (Metric: $\frac{FNR}{FNR_{ref}}$)					
Gender (ref.class: Male)					
Female	.47(.11)	.58(.14)	1.0(.07)	1.02(.14)	
Age (ref.class: 17-24)					
Limitation: M	ultiple attribute	es lead to	very sparse data	a points => identi [.]	fication
35-44	.26(.12)	.49(.2)	.71(.09)	.73(.1)	
45-54	.41(.24)	.82(.35)	.82(.17)	.84(.19)	
55+	.59(.36)	.99(.42)	.82(.18)	.91(.19)	

(c) Unemployment Rate





Gender fairness per region in the NoDemo (left) and NoDemo+Thresh. (right) models. Gender fairness is computed as the FNR of females in relation to that of males. The color extremities are both unfair (Color figure online)



Belliardo, E., Kalimeri, K. and Mejova, Y., 2023, September. Leave no Place Behind: Improved Geolocation in Humanitarian Documents. In Proceedings of the 2023 ACM Conference on Information Technology for Social Good (pp. 31-39).

15,661 documents from 45 emergencies from 33 countries

Belliardo, E., Kalimeri, K. and Mejova, Y., 2023, September. Leave no Place Behind: Improved Geolocation in Humanitarian Documents. In Proceedings of the 2023 ACM Conference on Information Technology for Social Good (pp. 31-39).

15,661 documents from 45 emergencies from 33 countries

geotagging

the extraction of text fragments that may be a location ("toponyms")

Close to Jordan's northern border with Syria, Zaatari has become emblematic of Syrians' displacement across the Middle East following its establishment in 2012. Since then, the camp's evolution from a small collection of tents into an urban

Belliardo, E., Kalimeri, K. and Mejova, Y., 2023, September. Leave no Place Behind: Improved Geolocation in Humanitarian Documents. In Proceedings of the 2023 ACM Conference on Information Technology for Social Good (pp. 31-39).

15,661 documents from 45 emergencies from 33 countries

geotagging

the extraction of text fragments that may be a location ("toponyms")

Close to Jordan's northern border with Syria, Zaatari has become emblematic of Syrians' displacement across the Middle East following its establishment in 2012. Since then, the camp's evolution from a small collection of tents into an urban

Belliardo, E., Kalimeri, K. and Mejova, Y., 2023, September. Leave no Place Behind: Improved Geolocation in Humanitarian Documents. In Proceedings of the 2023 ACM Conference on Information Technology for Social Good (pp. 31-39).

geocoding

the disambiguation of the toponym to a specific geographic location

Geotagging (finding toponyms in text)

Geotagging (finding toponyms in text)

469 English-language documents coded by DEEP annotators

Geotagging (finding toponyms in text)

- 469 English-language documents coded by DEEP annotators
- "Literal" vs. "associative" toponyms (as defined by Gritta et al.) • Literal: "latest events in central Syria"

 - Associative: "Syria Red Cross aided border regions"

Geotagging (finding toponyms in text)

- 469 English-language documents coded by DEEP annotators
- "Literal" vs. "associative" toponyms (as defined by Gritta et al.) • Literal: "latest events in central Syria"
- - Associative: "<u>Syria Red Cross</u> aided border regions"
- Total of 11,025 toponyms

Gritta, Milan, Mohammad Taher Pilehvar, and Nigel Collier. "A pragmatic guide to geoparsing evaluation: Toponyms, Named Entity Recognition and 34 pragmatics." Language resources and evaluation 54 (2020): 683-712.

561 unique document/toponym match pairs from 39 documents, with 474 having non-empty matches, spanning 78 countries

561 unique document/toponym match pairs from 39 documents, with 474 having non-empty matches, spanning 78 countries

474 having non-empty matches, spanning 78 countries

matches.

- 561 unique document/toponym match pairs from 39 documents, with
- RoBERTa F1 score .72 (.02) on exact matches and .85(.02) on partial

oBERTa _{tuned} roBERTa _{baseline}		Spacy _{tuned}	Spacy _{baseline}
1. two VOS vessels. Two will and one will	be located on board the V	OS Theia, two will be locate	d at Aden port,
None √ VOS Theia		None 🗸	None √
2 and volatile in June, with	h tensions between the Syr	rian Government and 'recond	ciled' non-state
armed groups reported			
None√	Syrian Government	None 🗸	None 🗸
3. The US Government Congr	ratulates Buhari in Spite o	of Violent and Corrupt Elect	ion
None√	None√	None√	US
4. Plateau(5), Taraba(3), Gor	nbe(1), Kaduna(1), Kwar a	a(1), FCT(1), Benue(2), River	rs(1) Kogi(1)
Kwara√	None	None	Kwara(1
5. However, clashes intensifie	ed in At Tuhayat and Z	abid districts of Hudayda	h city
At Tuhayat and Zabid dis-	At Tuhayat	Tuhayat	None
tricts ✓			
6. sources report 17 dead and	eight wounded, currently	in treatment at Am-Tima	n hospital
Am-Timan hospital√	None	Am-Timan hospital√	None

_

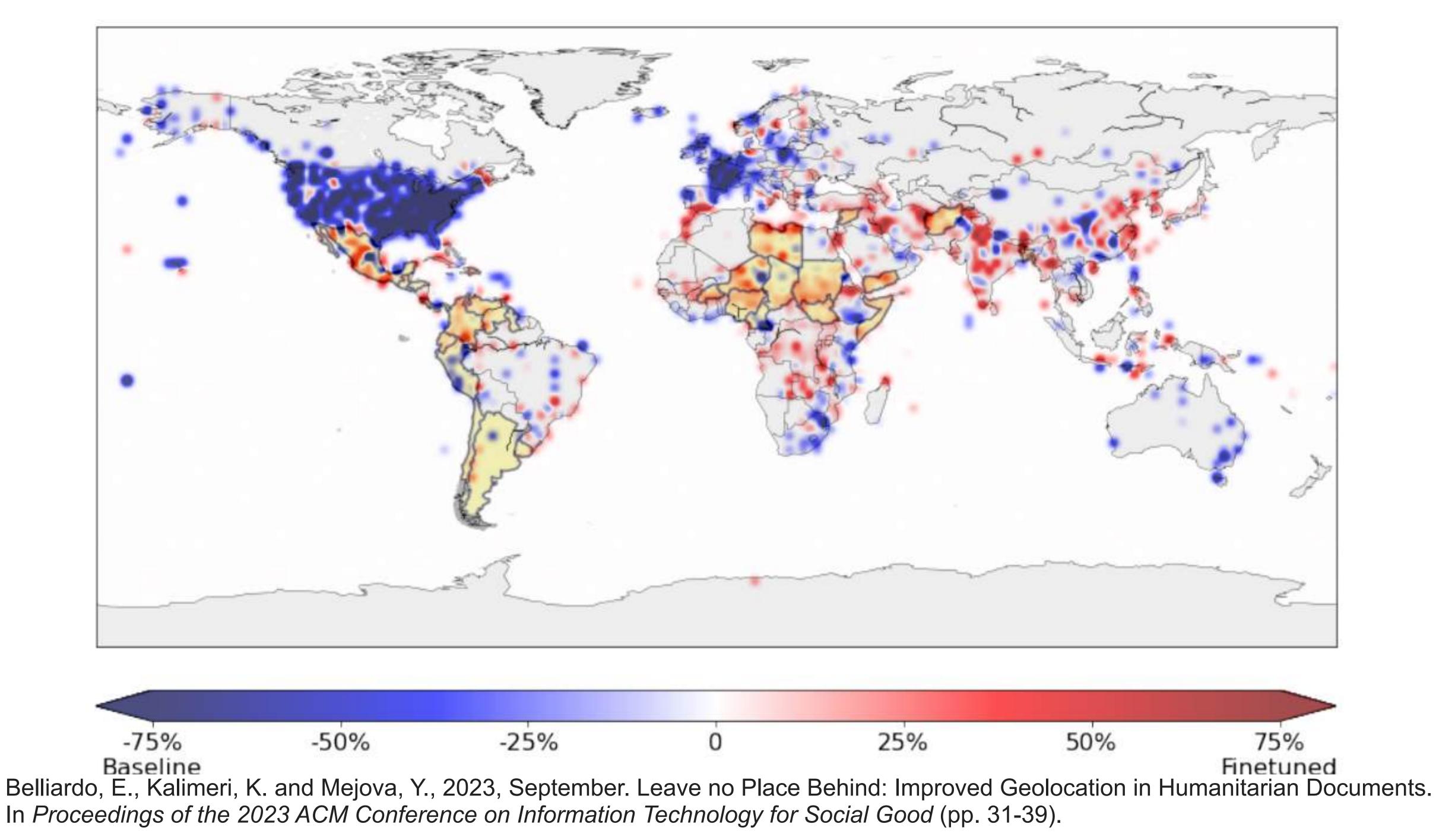
-

roBERTa _{baseline}	
ard t	
en th	
nme	
in S	
exa	
1), K	
at a	
curr	

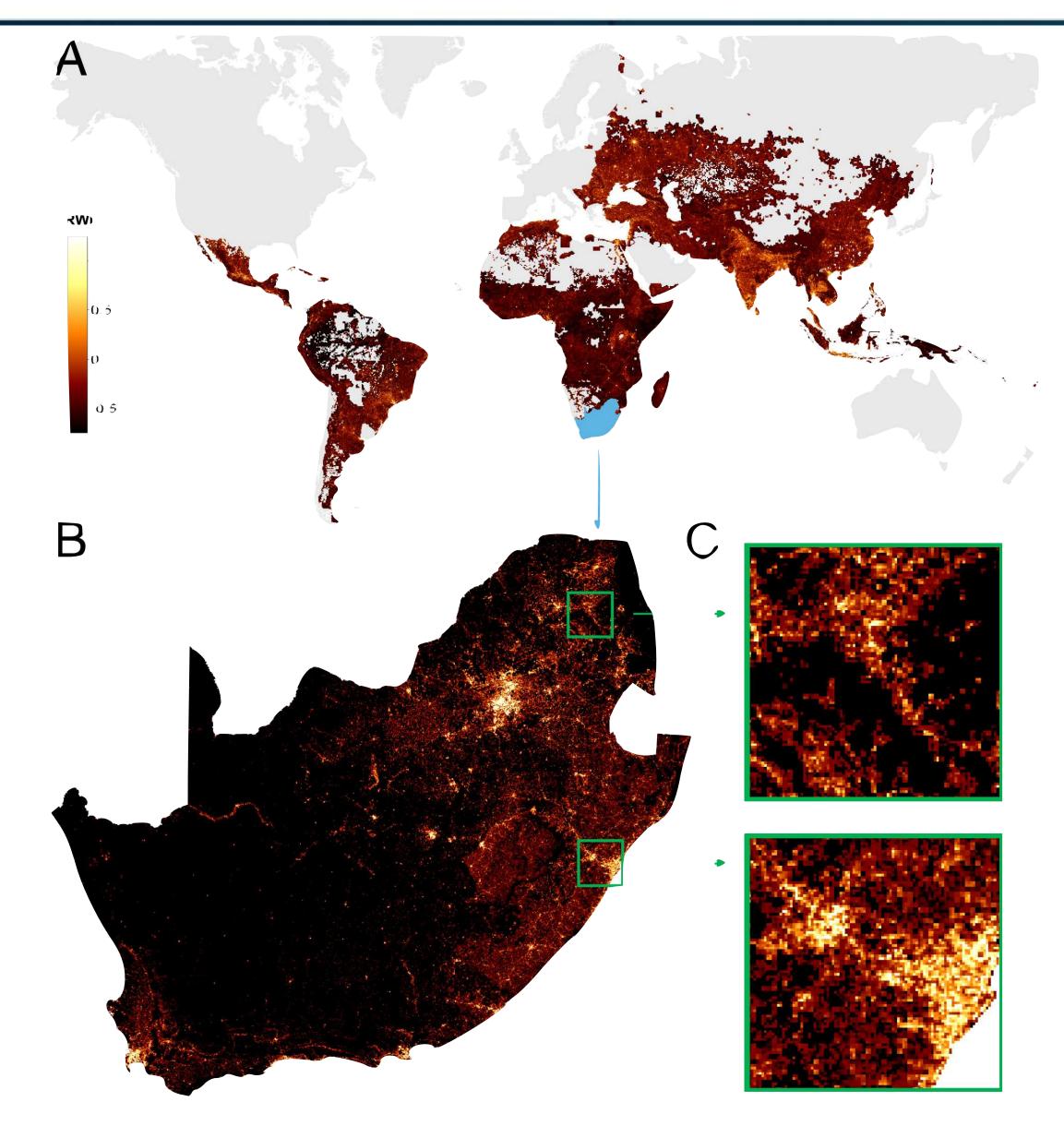
Spacy _{tuned}		Spacy _{baseline}	
the \	VOS Theia, two will be locate	d at Aden port,	
	None √	None √	
he Sy	rian Government and 'recond	ciled' non-state	
ent	None 🗸	None 🗸	
Spite	of Violent and Corrupt Elect	ion	
act	matches and .97 or	n partial matches.	
Kwa	ra(1), FCT(1), Benue(2), River	rs(1) Kogi(1)	
	None	Kwara(1	
ind	Zabid districts of Hudayda	h city	
	Tuhayat	None	
renti	ly in treatment at Am-Tima	n hospital	
	Am-Timan hospital√	None	

_

-

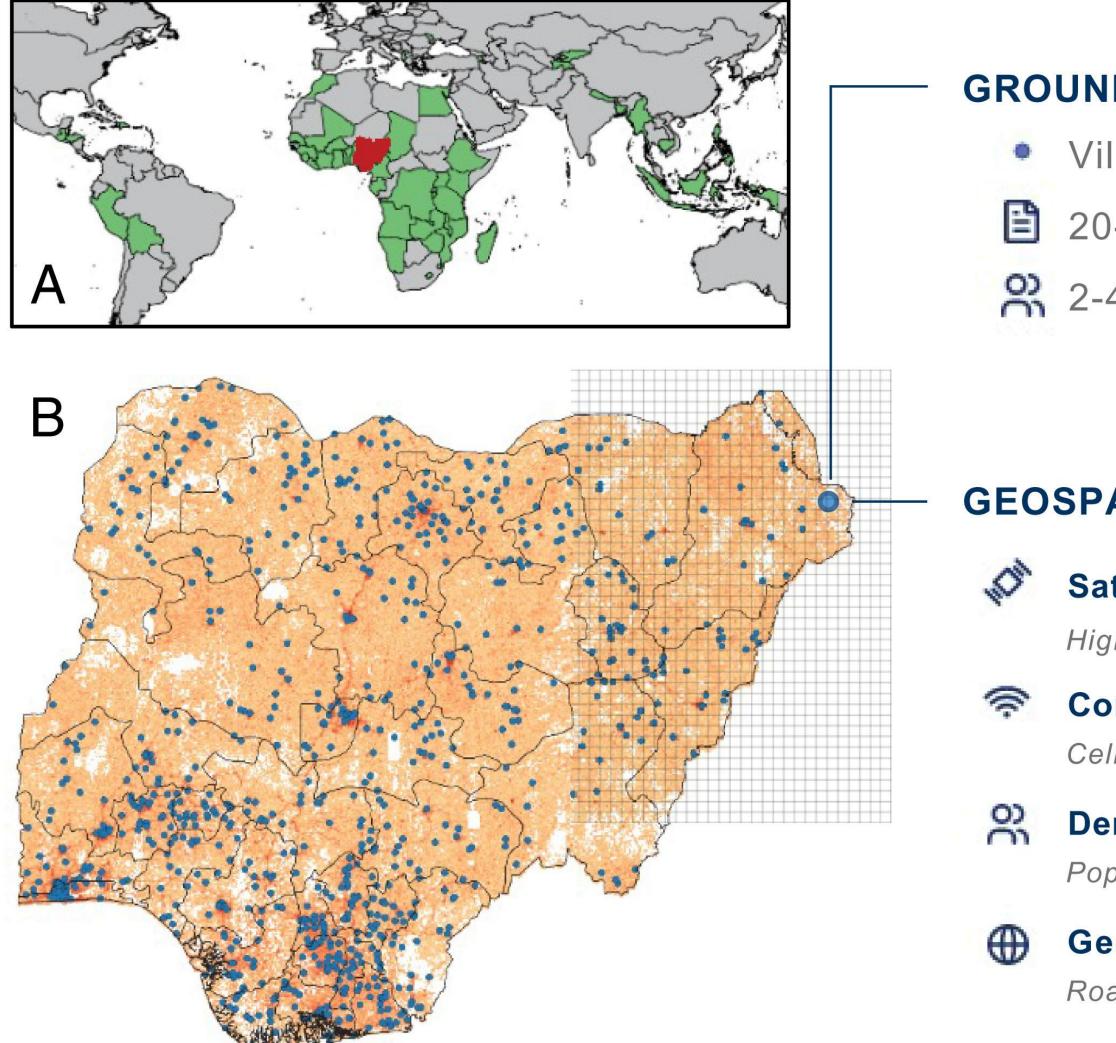


мета Relative Wealth Index



Chi, G., Fang, H., Chatterjee, S. and Blumenstock, J.E., 2022. Microestimates of wealth for all low-and middle-income countries. Proceedings of the National Academy of Sciences, 119(3), p.e2113658119.

Relative Wealth Index



Chi, G., Fang, H., Chatterjee, S. and Blumenstock, J.E., 2022. Microestimates of wealth for all low-and middle-income countries. *Proceedings of the National Academy of Sciences*, *119*(3), p.e2113658119.

GROUND TRUTH DATA

- Villages with surveys
- 20-50 surveys per village

C

R 2-4 hours per survey

GEOSPATIAL "BIG" DATA

Satellites

High-res imagery, night lights

Connectivity

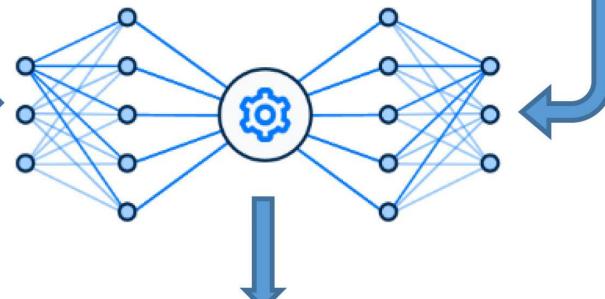
Cell towers, devices

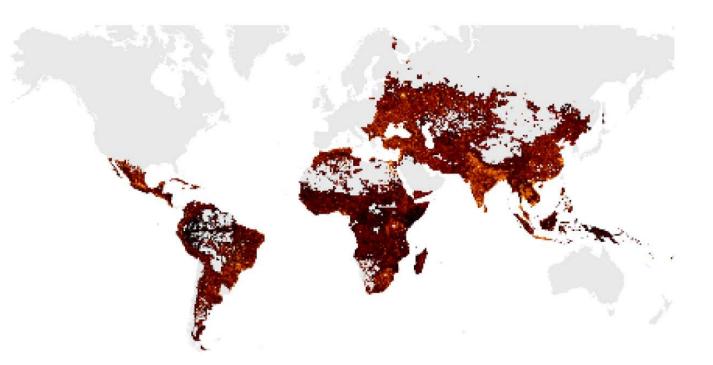
Demography

Population

Geography

Road density, elevation





Could we possibly employ the RWI index in an social assistance programme?

Sartirano, D., Kalimeri, K., Cattuto, C., Delamónica, E., Garcia-Herranz, M., Mockler, A., Paolotti, D. and Schifanella, R., 2023. Strengths and limitations of relative wealth indices derived from big data in Indonesia. Frontiers in big Data, 6, p.1054156.

© UNICEF

About the Social Protection Card

The Social Protection Card (KPS) is a card issued by the government to poor households.

As a marker of poor households, the KPS card is useful for accessing government assistance as part of the Subsidised Rice for the Poor Programme, more commonly known as Raskin. Moreover, KPS can also be used to access the Cash for Poor Students (BSM) and Unconditional Cash Transfers (BLSM).

The government issued KPS to 15.5 million poor and vulnerable households, equivalent to 25 percent of households with the lowest socio-economic status in Indonesia.

Sartirano, D., Kalimeri, K., Cattuto, C., Delamónica, E., Garcia-Herranz, M., Mockler, A., Paolotti, D. and Schifanella, R., 2023. Strengths and limitations of relative wealth indices derived from big data in Indonesia. Frontiers in big Data, 6, p.1054156.

About the Social Protection Card

The Social Protection Card (KPS) is a card issued by the government to poor households.

As a marker of poor households, the KPS card is useful for accessing government assistance as part of the Subsidised Rice for the Poor Programme, more commonly known as Raskin. Moreover, KPS can also be used to access the Cash for Poor Students (BSM) and Unconditional Cash Transfers (BLSM).

The government issued KPS to 15.5 million poor and vulnerable households, equivalent to 25 percent of households with the lowest socio-economic status in Indonesia.

Sartirano, D., Kalimeri, K., Cattuto, C., Delamónica, E., Garcia-Herranz, M., Mockler, A., Paolotti, D. and Schifanella, R., 2023. Strengths and limitations of relative wealth indices derived from big data in Indonesia. Frontiers in big Data, 6, p.1054156.

Poverty Surveys

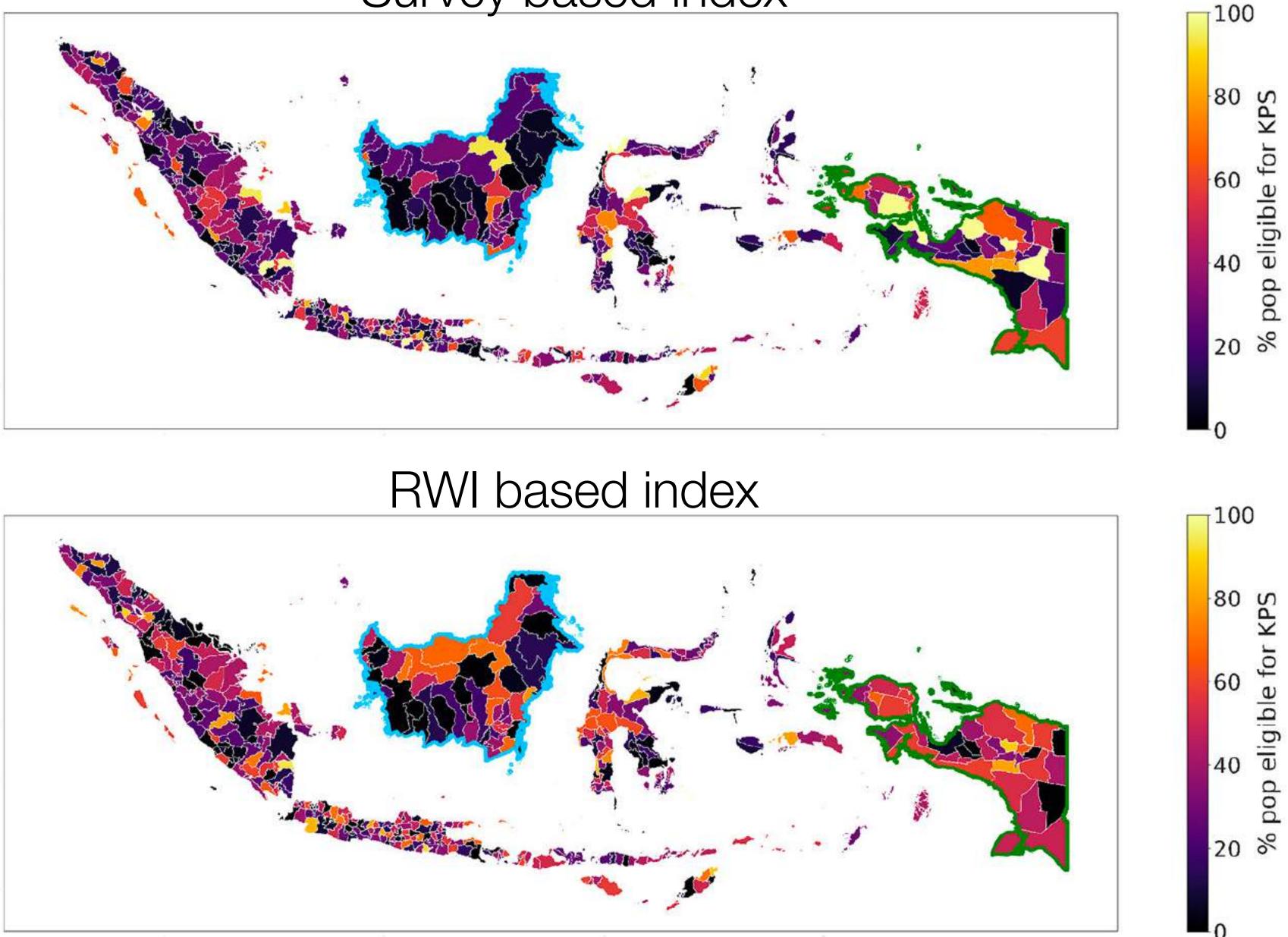
- not always measuring the same aspects of poverty (DHS, SUSENAS)
- Index estimation methods are not standard
- Different time frequency and spatial aggregation

Poverty Surveys

- not always measuring the same aspects of poverty (DHS, SUSENAS)
- Index estimation methods are not standard
- Different time frequency and spatial aggregation

Lack of a unique "ground-truth"

Survey based index





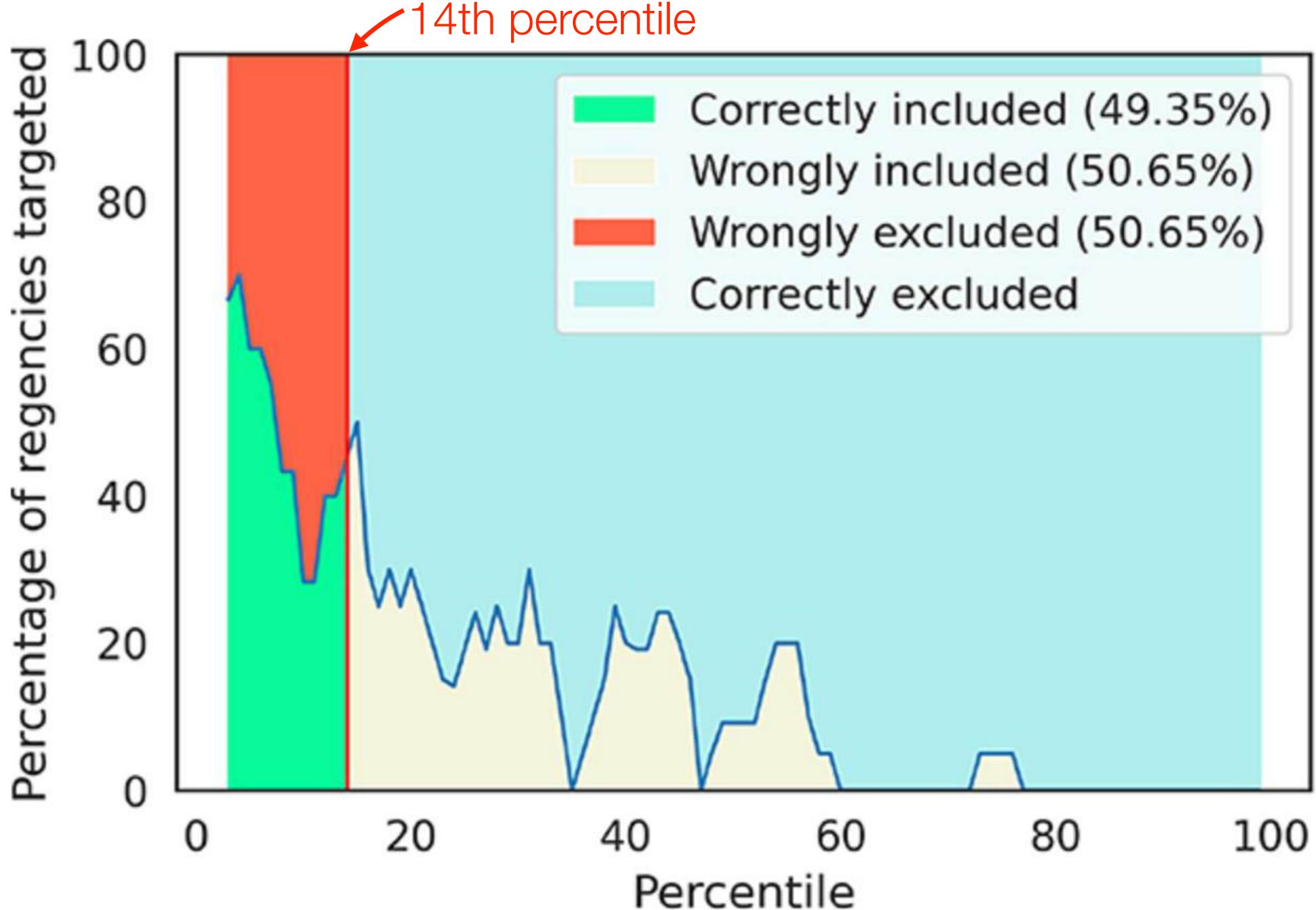
Sartirano, D., Kalimeri, K., Cattuto, C., Delamónica, E., Garcia-Herranz, M., Mockler, A., Paolotti, D. and Schifanella, R., 2023. Strengths and limitations of relative wealth indices derived from big data in Indonesia. Frontiers in big Data, 6, p.1054156.

Accuracy vs Fairness

- between the Survey and RWI indices
- aggregations

• Good performance in population prediction (ranked correlations rho= .70 - .75)

Good spatial representation with .72 - .79 AUROC in province and regency



When considering the 14% poorest quantile

18 out of 36 million people wrongly excluded

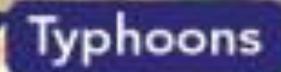
Sartirano, D., Kalimeri, K., Cattuto, C., Delamónica, E., Garcia-Herranz, M., Mockler, A., Paolotti, D. and Schifanella, R., 2023. Strengths and limitations of relative wealth indices derived from big data in Indonesia. Frontiers in big Data, 6, p.1054156.

© UNICEF

Can we have an early alert system for tropical cyclone impact?

Kooshki Forooshani, M., van den Homberg, M., Kalimeri, K., Kaltenbrunner, A., Mejova, Y., Milano, L., Ndirangu, P., Paolotti, D., Teklesadik, A. and Turner, M.L., 2024. Towards a global impact-based forecasting model for tropical cyclones. Natural Hazards and Earth System Sciences, 24(1), pp.309-329.

© UNICEF



Cyclones

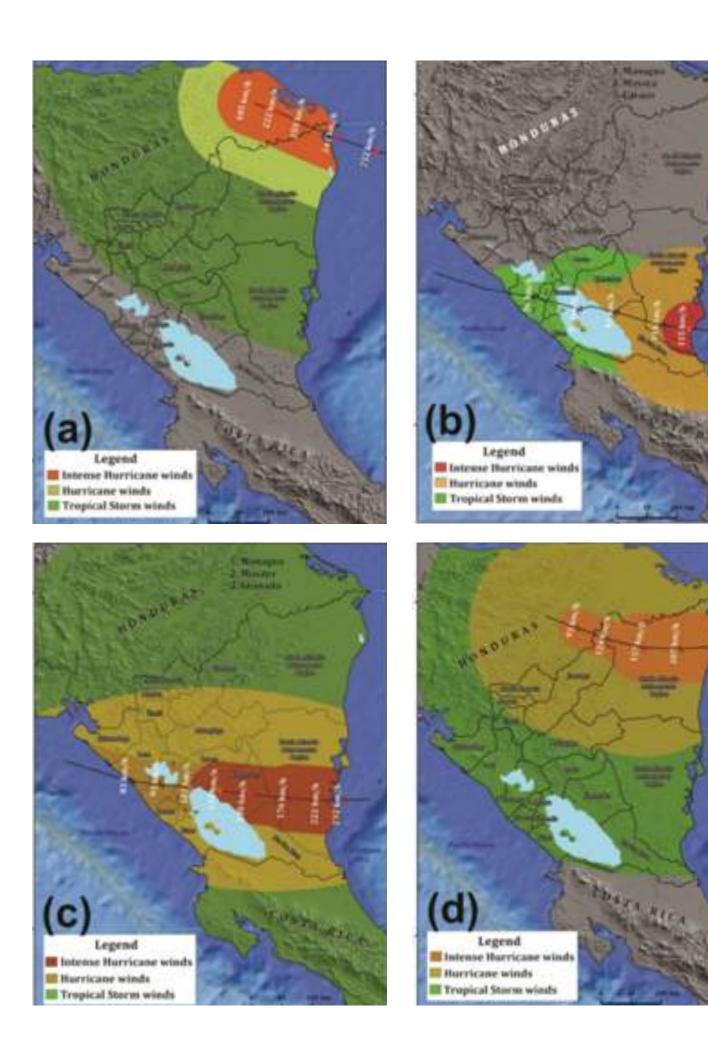
IPCC, 2023: Sections. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 35-115, doi: 10.59327/IPCC/AR6-9789291691647

Hurricanes

Cyclones

Typhoons

CURRENT APPROACH



Method

- - maps.

Shortcomings

Uses forecast error cones from hurricane predictions, like the Esri **Disaster Response Program**/NOAA overlaid with population density

Limited Hazards Considered: Only tracks hurricane path and intensity; lacks surge, rainfall, and multi-hazard data.

No Infrastructure Impact: Only population exposure; does not account for infrastructure damage estimates.

Misleading population at risk estimates: Early cyclone error cones are too wide for an accurate estimation of humanitarian support.

Philippines

Anticipatory Action Framework Philippines, 2021-2022

Manual and Guideline • Source: OCHA • Posted: 15 Sep 2021 • Originally published: 15 Sep 2021

Executive summary

The Framework outlines an approach to a collective anticipatory action delivered at scale as an innovative attempt to pilot typhoon response in the Philippines. The document includes details about the forecasting trigger (the Model), the preagreed action plans (the Delivery) and the pre-arranged financing (the Money). As this is a learning pilot an investment will be made in documenting evidence and learning (the Learning). CERF has allocated \$7.5 million for this pilot in typhoon season 2021/2022.

Primary country: **Philippines** Source: UN Office for the Coordination of Humanitarian Affairs Format: Manual and Guideline

Theme:

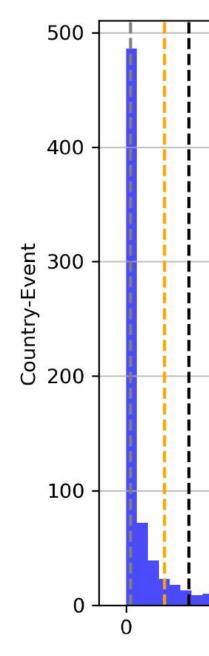
Ct		Average of 100 random shuffle split		
99	RMSE	XGBoost regression model (M1)	Combined model	
	bin_1: [0,1)	1.04(±0.09)	1.25(±0.10)	
igher Impa	bin_2: [1,10)	4.36(±0.31)	5.40(±0.49)	
<u>e</u>	bin_3: [10,20)	8.99(±0.53)	7.58(±0.71)	
D D	bin_4: [20,50)	17.49(±1.10)	13.86(±1.15)	
	bin_5: [50,101)	31.83(±4.11)	28.18(±3.84)	

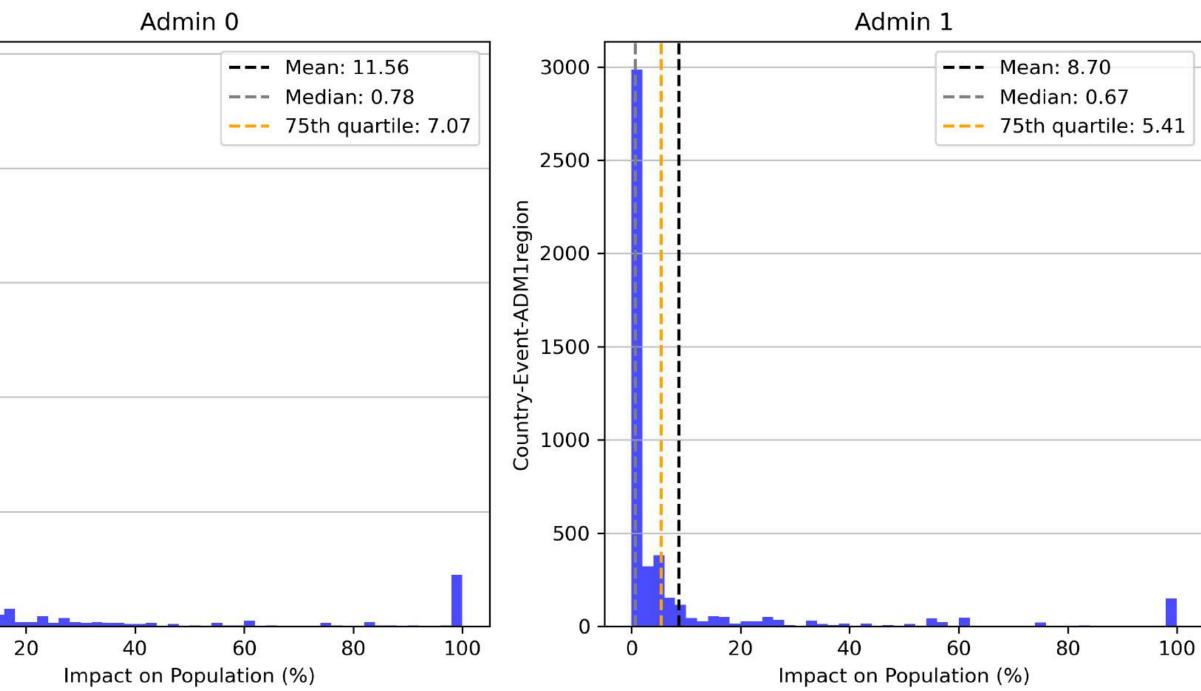
Optimised the 510 model

- model evaluation
- feature selection
- cross validation
- explored different ML models

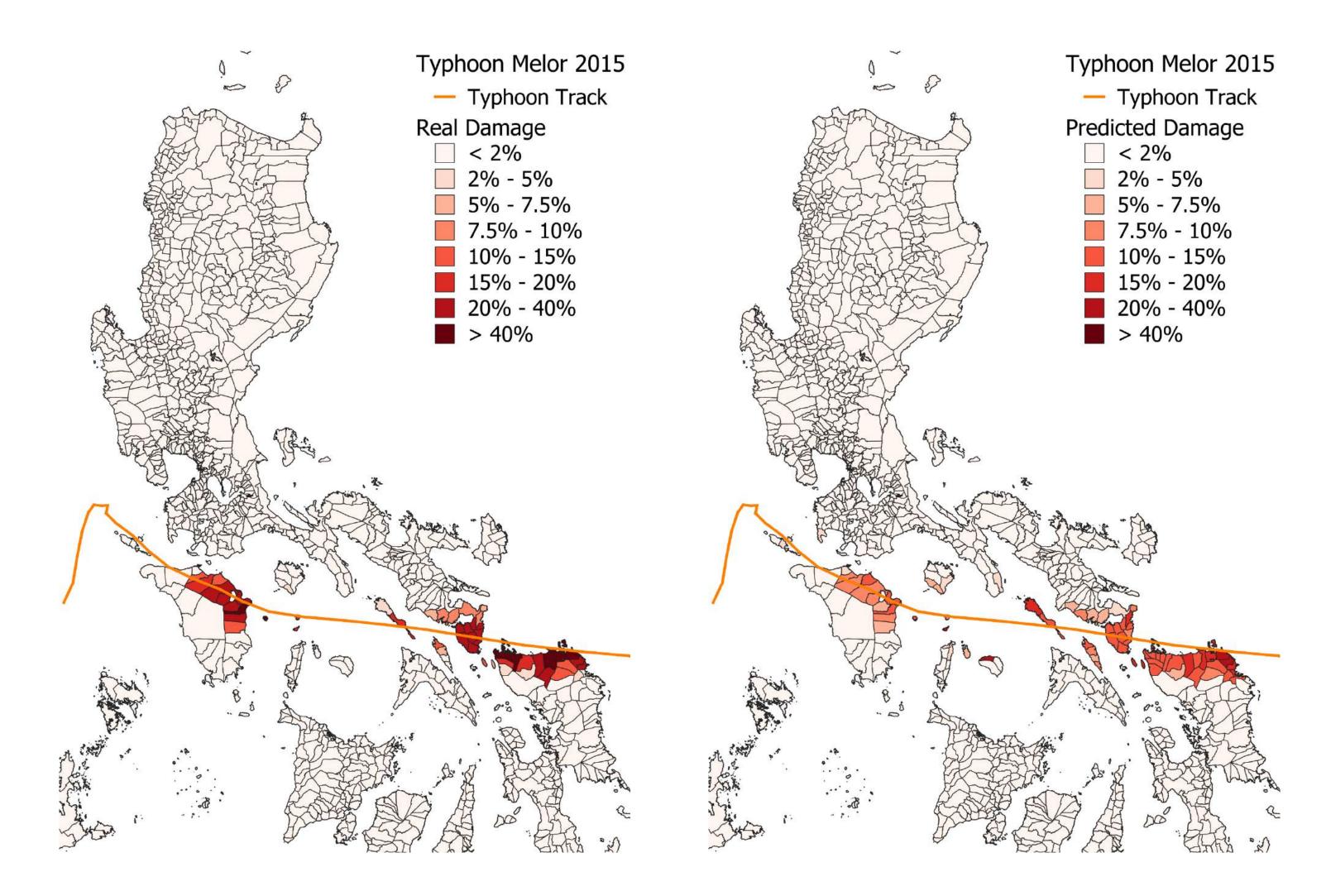
Model Improvements

- Used only global, grid-based features
- Added social and vulnerability features
 - relative wealth index (from Meta)
 - %houses-damaged in the last 5 years
 - %grid classified as rural, urban or water (from GHSL)
- Compared to the municipality based model
 - XGBoost regression model
 - Compare to a naive baseline model
 - Transform output to the municipality level
- Applied feature importance





Case Study: Typhoon Melor, 2015

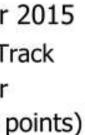


Actual Damage per municipality

Predicted Damage by the 2SG-Global+ model (F1 .64) **35/41 correctly identified** municipalities vs 25/41 of old model

Typhoon Melor 2015 Typhoon Track **Prediction Error** (in percentage points) < -50 -50 - -20 -20 - -10 -10 - -5 -5 - -1 -1 - 1 1 - 5 5 - 7.5 7.5 - 10 10 - 15 > 15

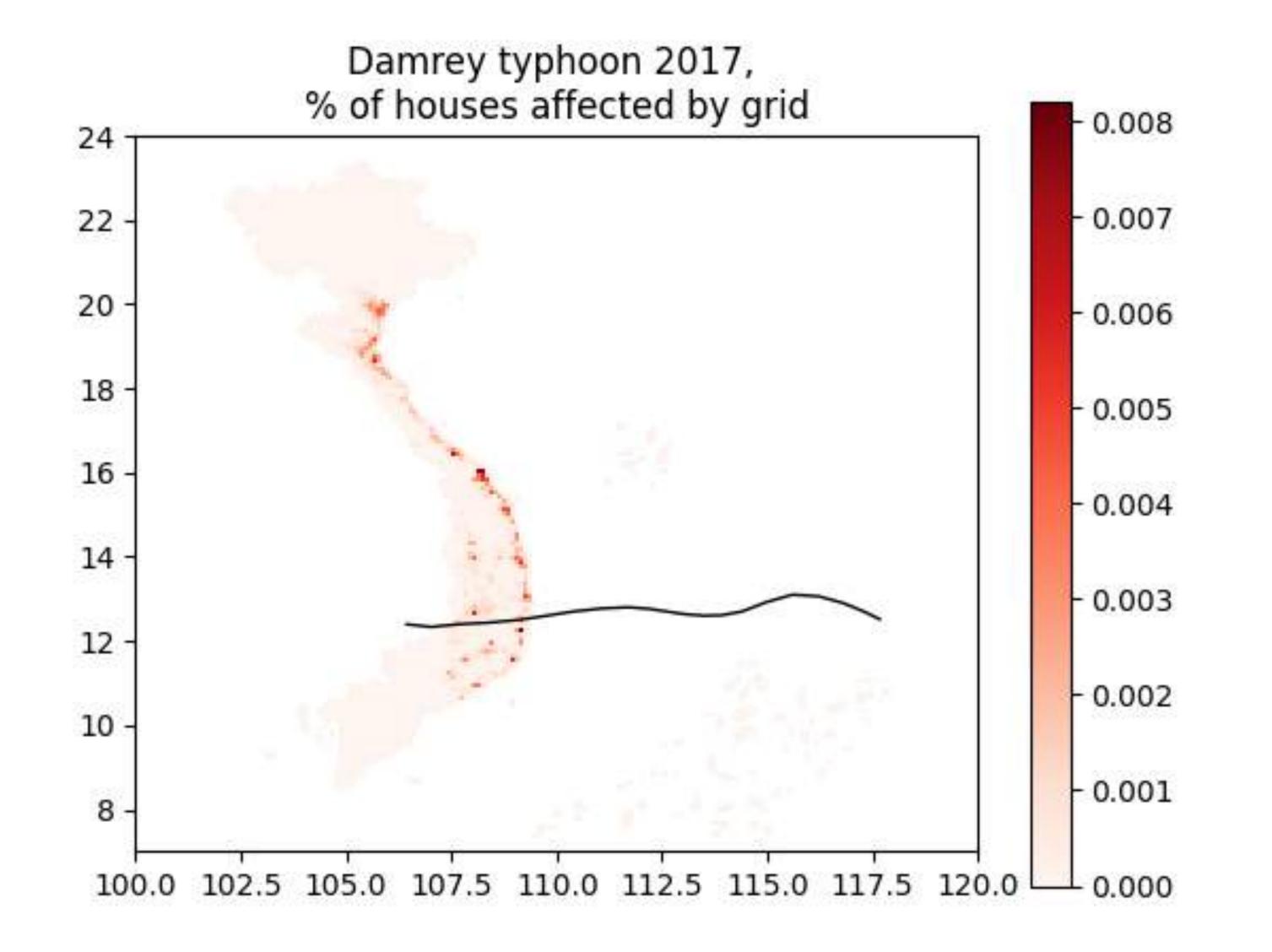
Prediction Error



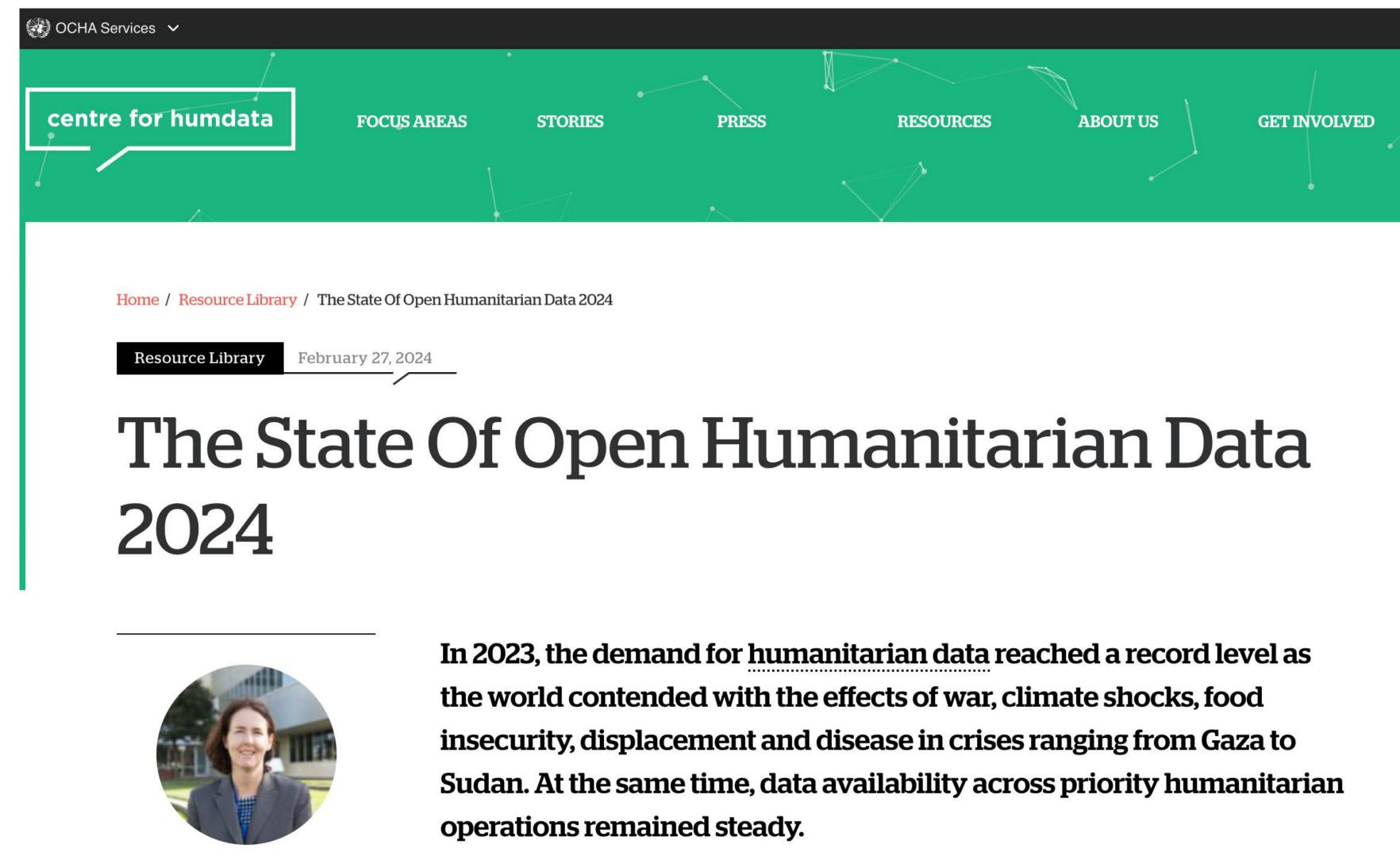
But OCHA doesn't just "save" money – it reallocates it from mistaken early actions to people who actually suffer ≥ 10 % housing destruction, sharpening the value-for-money of each dollar.

On an average \$145,000 cost per municipality, the saving from 4 fewer false alarms is more than half a million dollars.

Example of Questionable Groundtruth data - Vietnam



Example of Questionable Groundtruth data - Vietnam



0.000

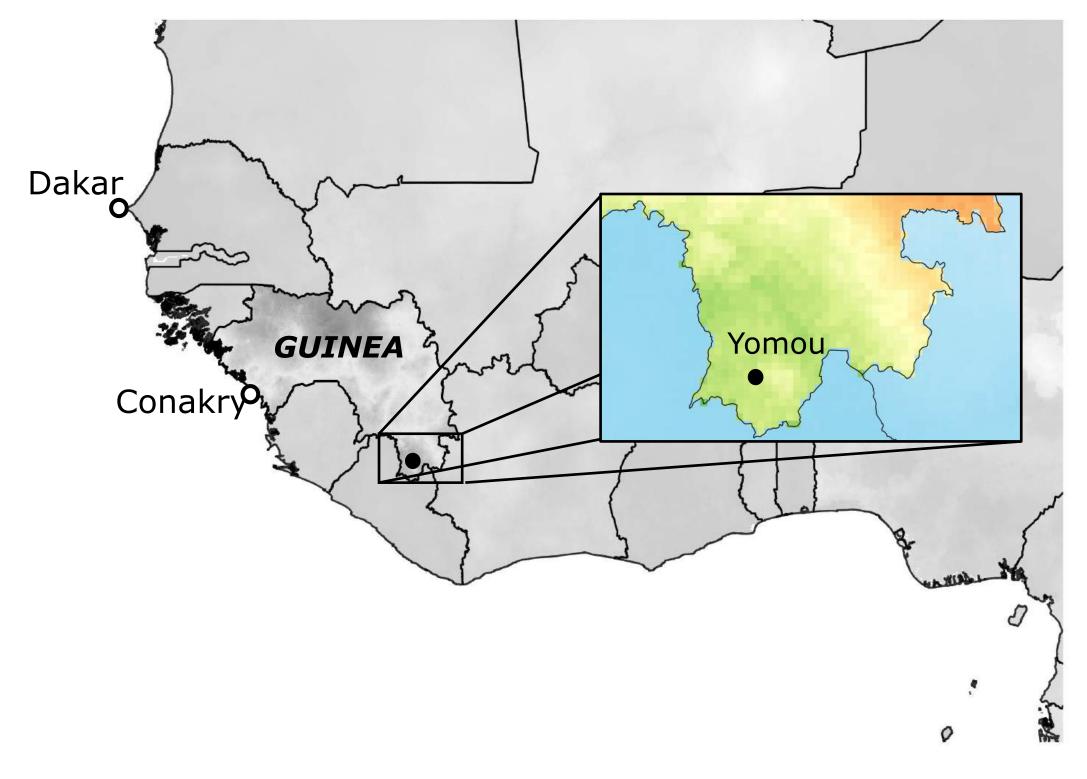
"The extent and complexity of the problem does not matter as much as the willingness to solve it" - Ralph Marston

111.14.1.14.60000

In search of zero dose children in remote districts of Guinea

LOCATE AND LINK UNREACHED CHILDREN WITH IMMUNIZATION AND BIRTH REGISTRATION

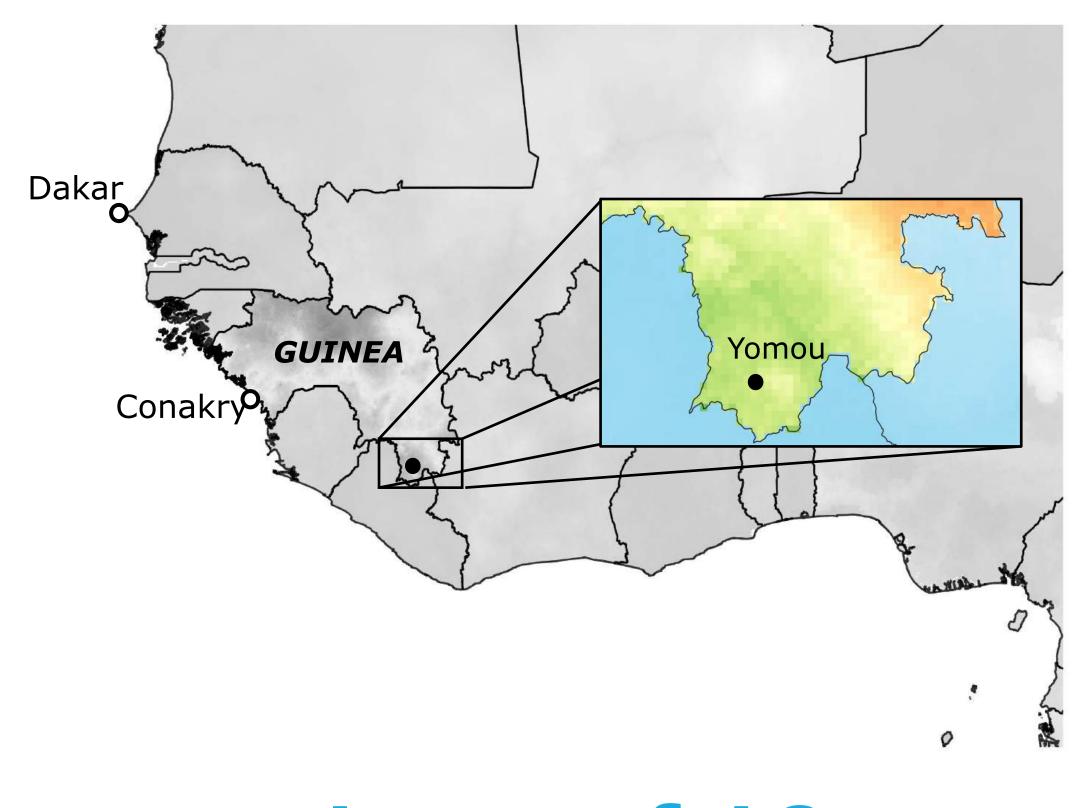
slide credit Martin Bogaert & Tommaso Salvatori



In search of zero dose children in remote districts of Guinea

LOCATE AND LINK UNREACHED CHILDREN WITH IMMUNIZATION AND BIRTH REGISTRATION

slide credit Martin Bogaert & Tommaso Salvatori



1 out of **10** children do not reach the age of five

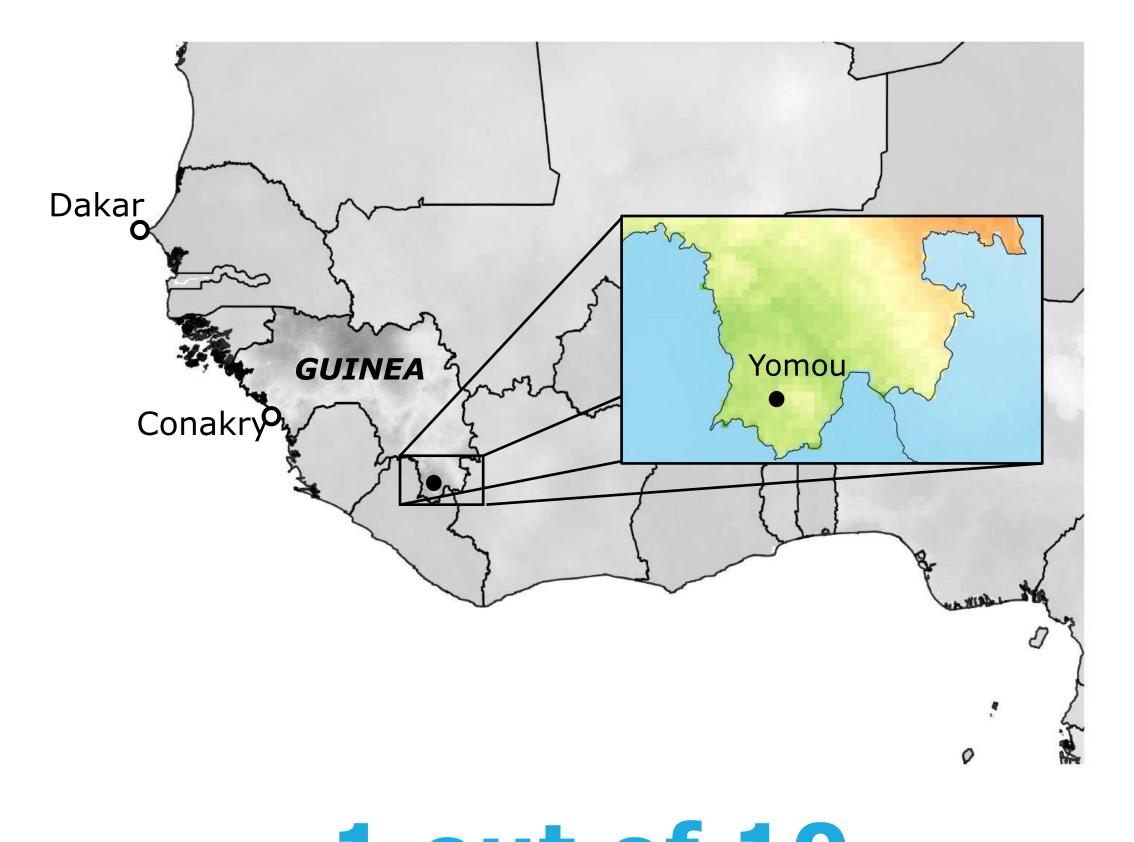
In search of zero dose children in remote districts of Guinea

LOCATE AND LINK UNREACHED CHILDREN WITH IMMUNIZATION AND BIRTH REGISTRATION

190k

children have never received a single vaccine

slide credit Martin Bogaert & Tommaso Salvatori

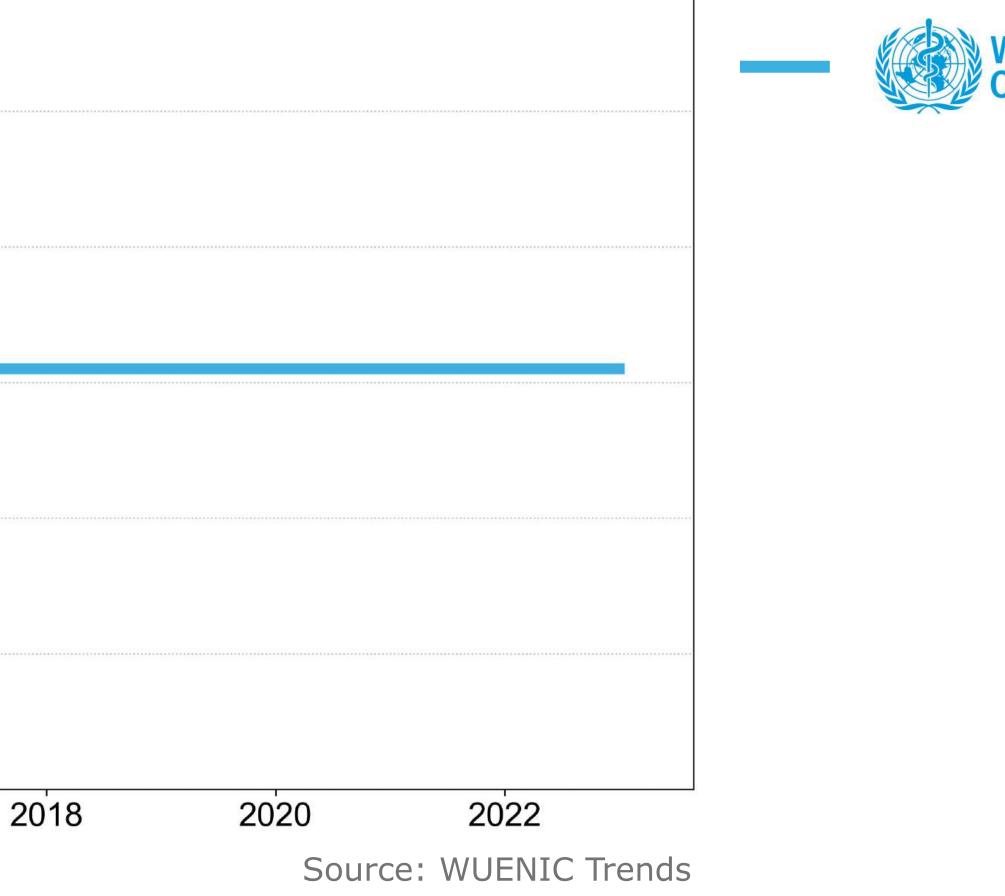


1 out of **10** children do not reach the age of five

Administrative data reporting is prone to errors

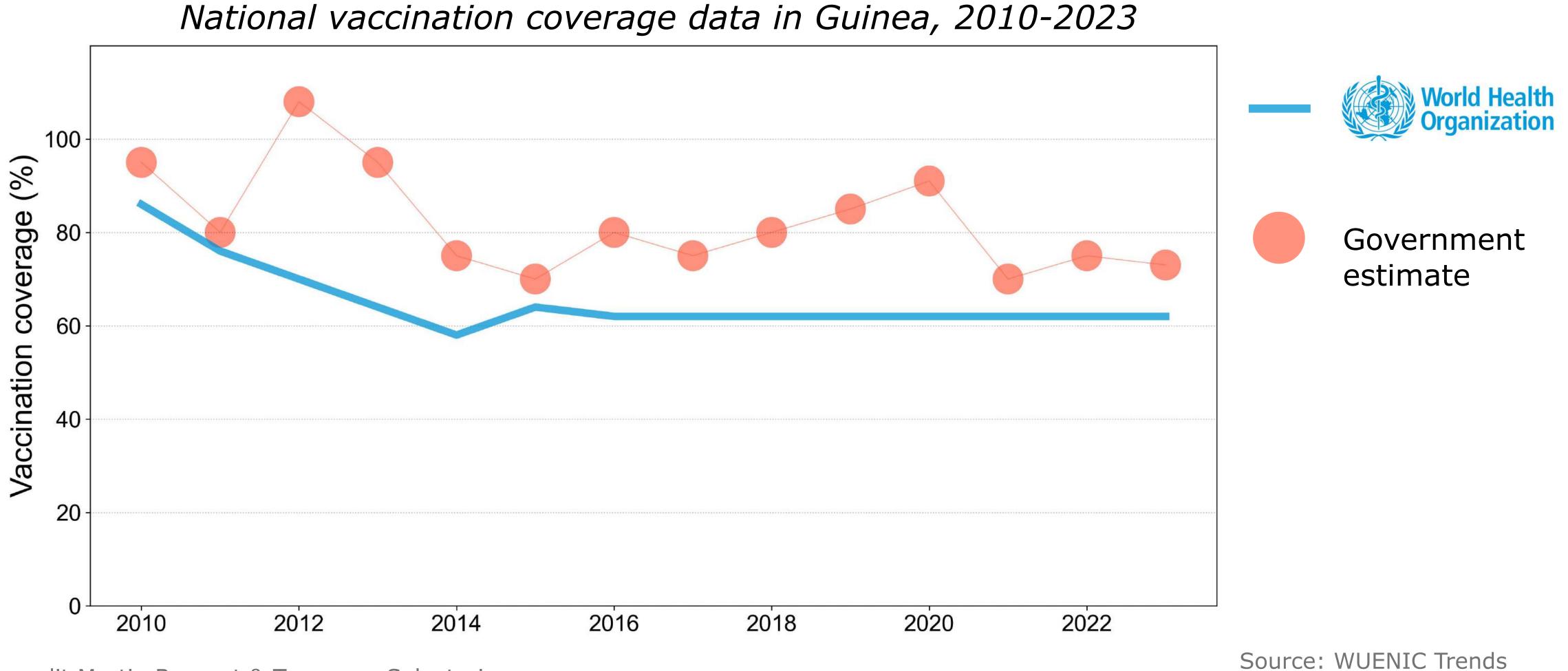
National vaccination coverage data in Guinea, 2010-2023 Vaccination coverage (%)

slide credit Martin Bogaert & Tommaso Salvatori



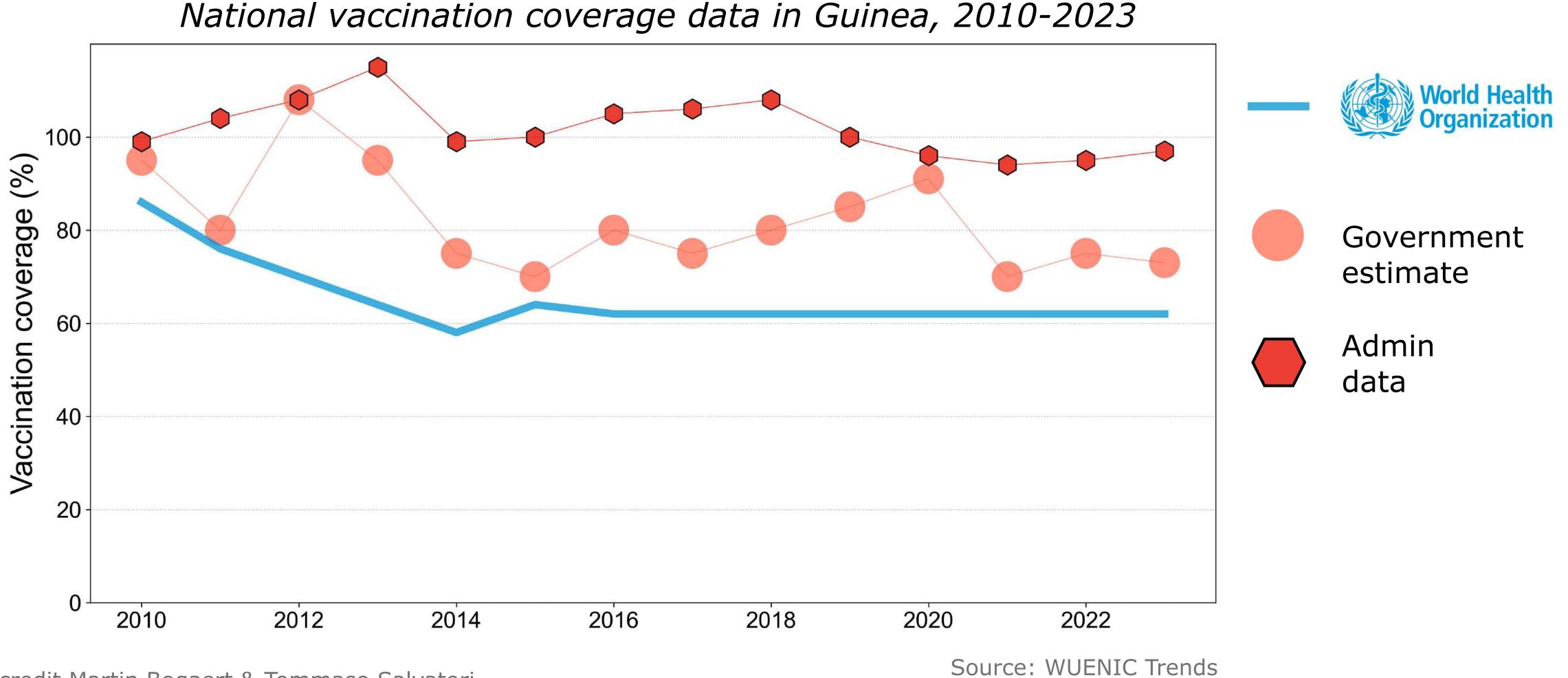
d Health

Administrative data reporting is prone to errors

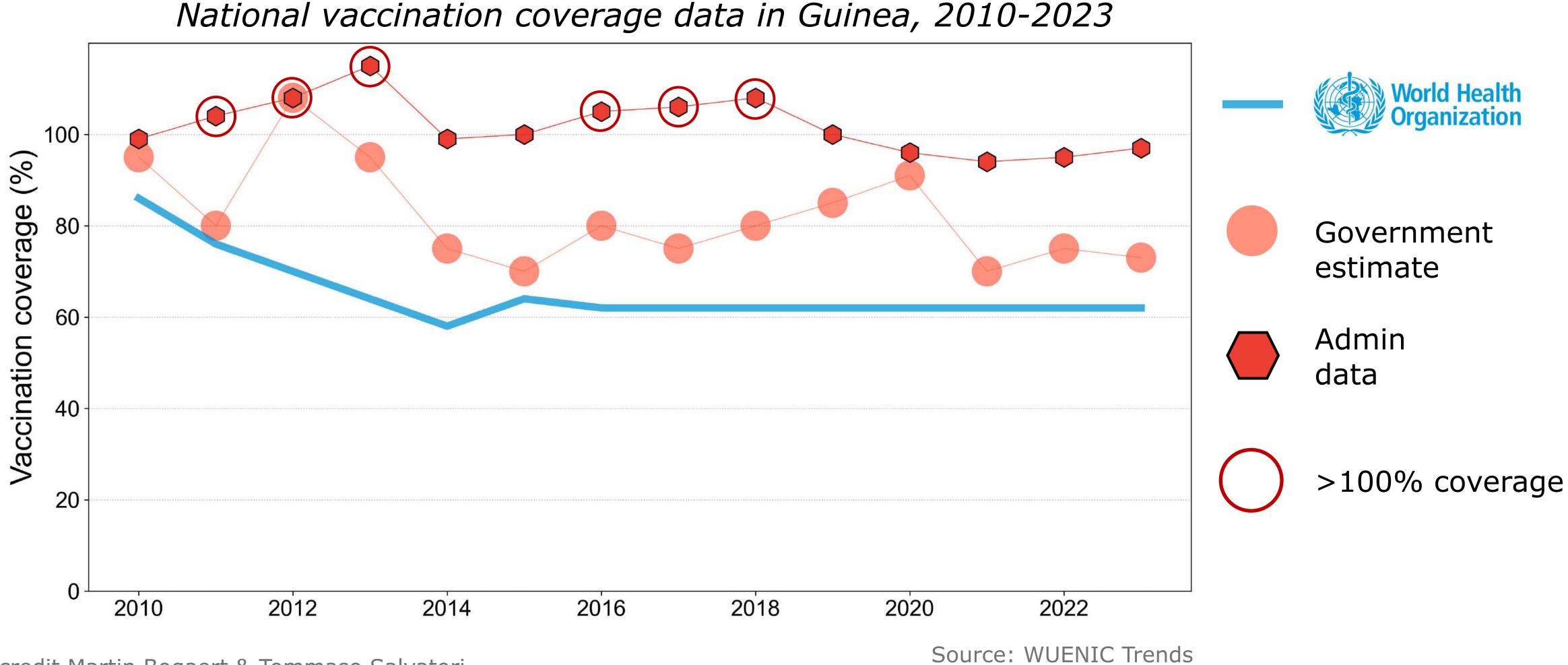


slide credit Martin Bogaert & Tommaso Salvatori

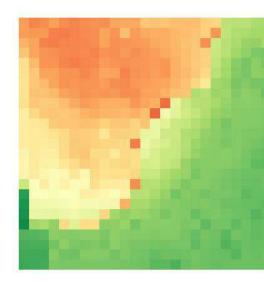
Administrative data reporting is prone to errors

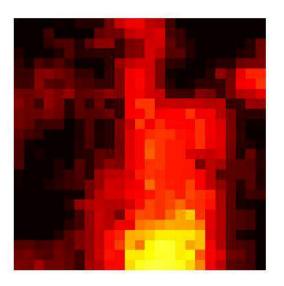


Administrative data reporting is prone to errors

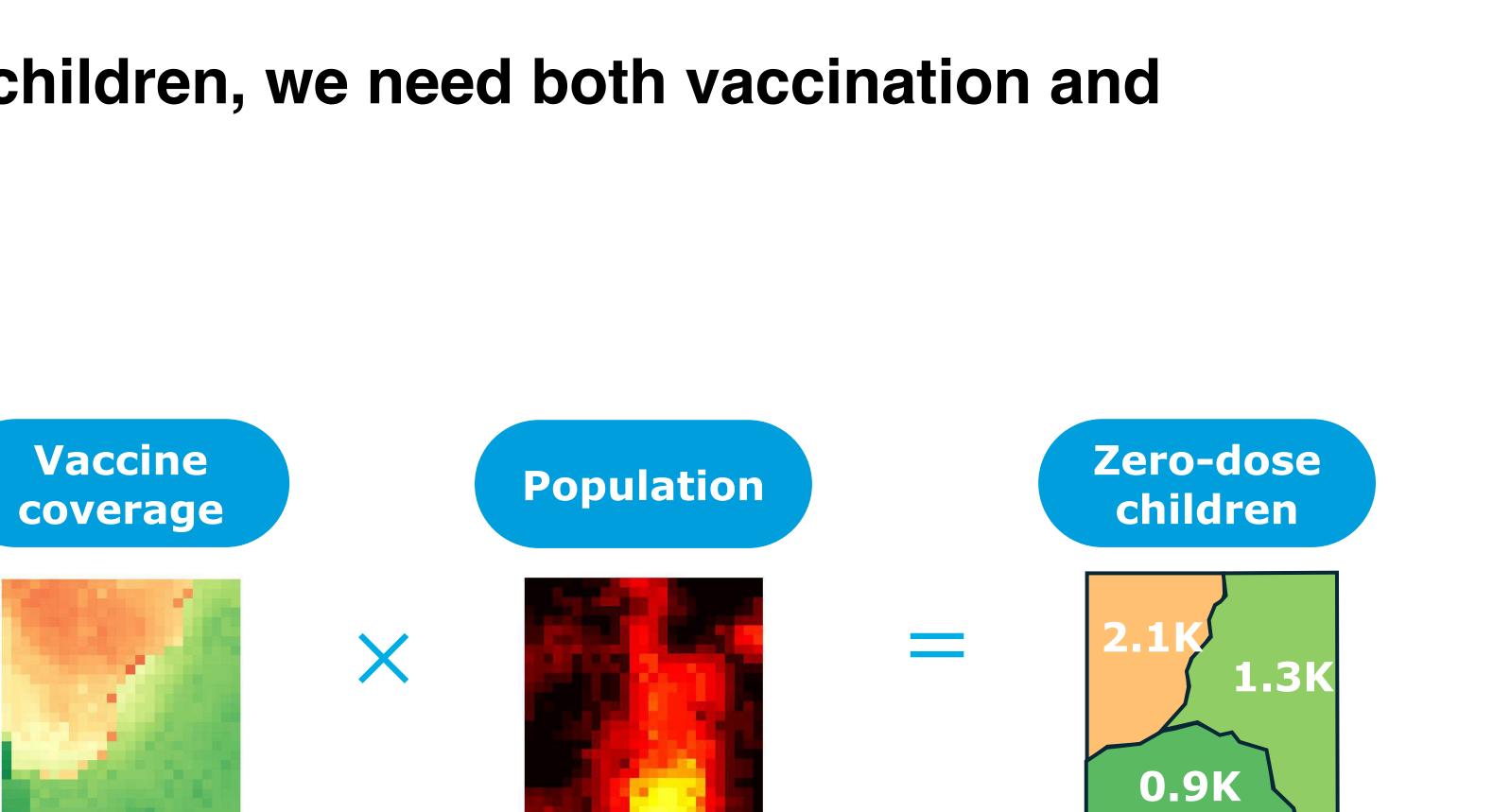


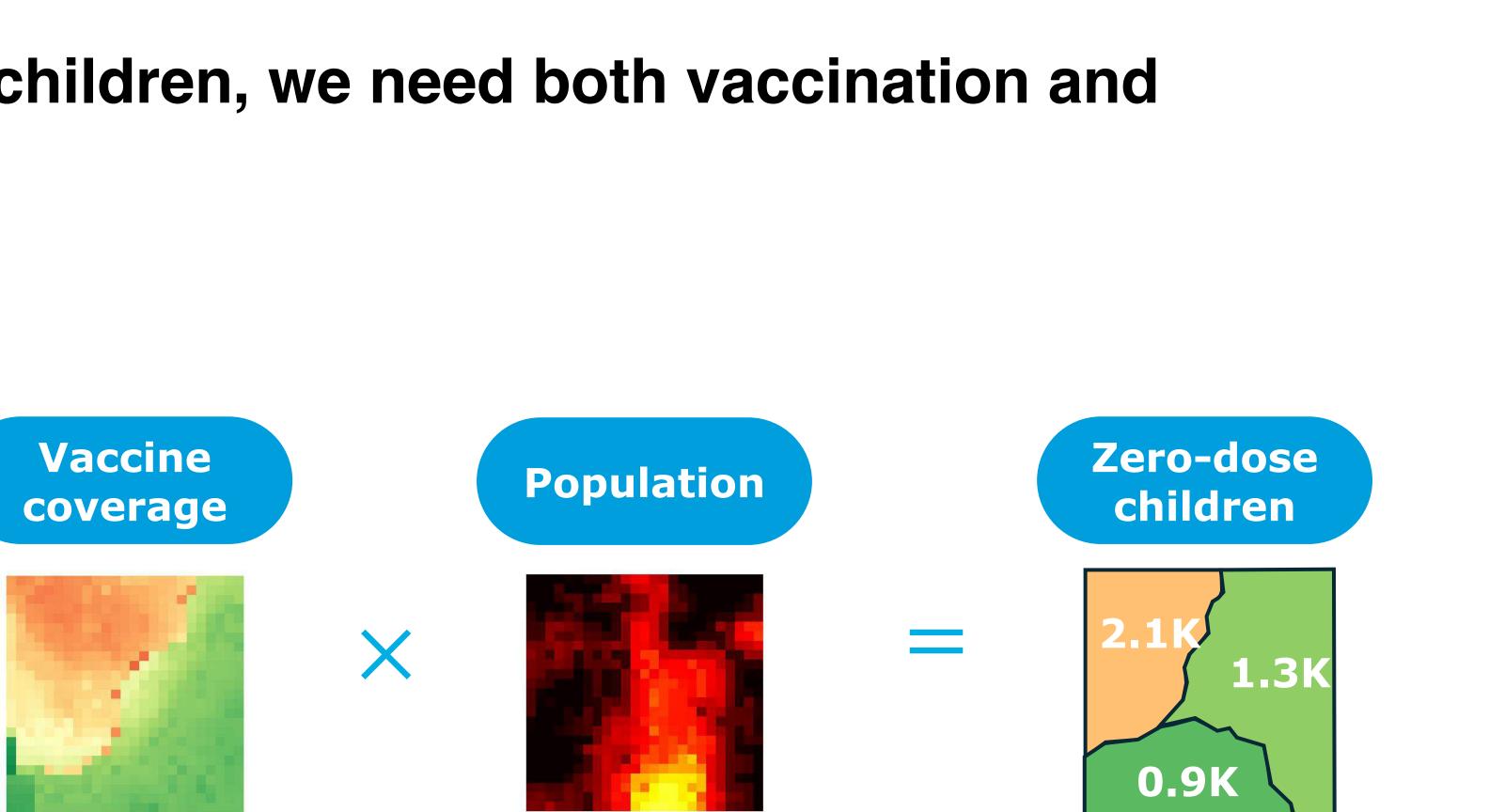
To estimate zero-dose children, we need both vaccination and population maps

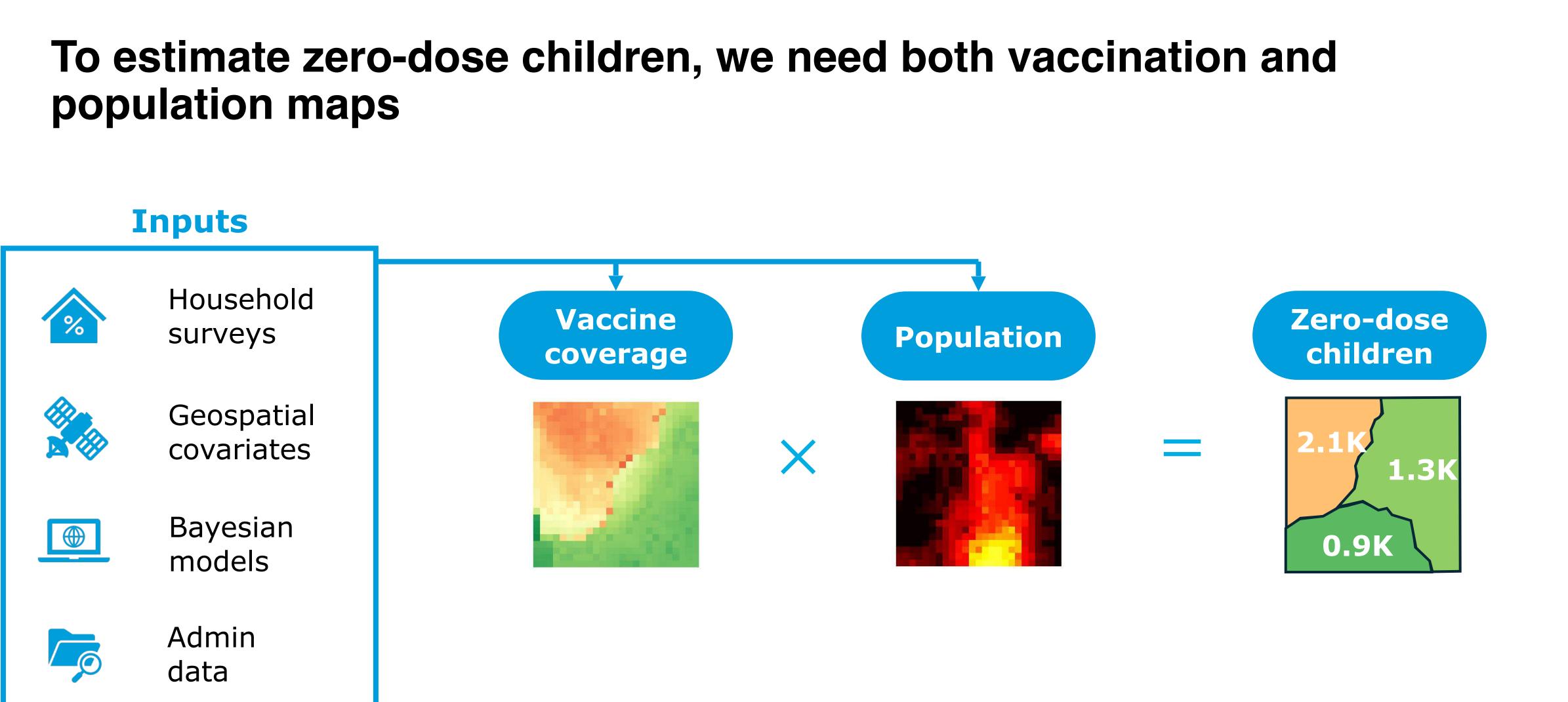


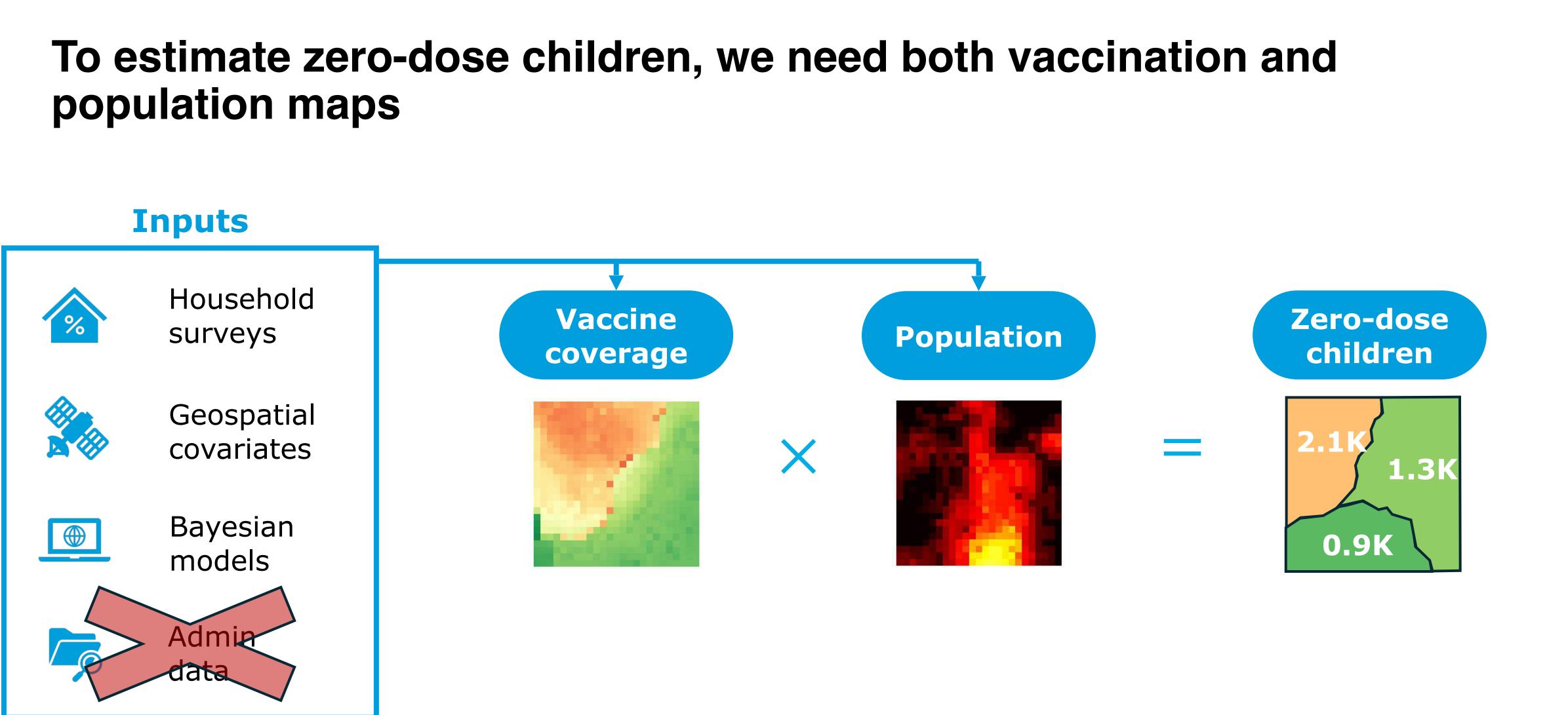


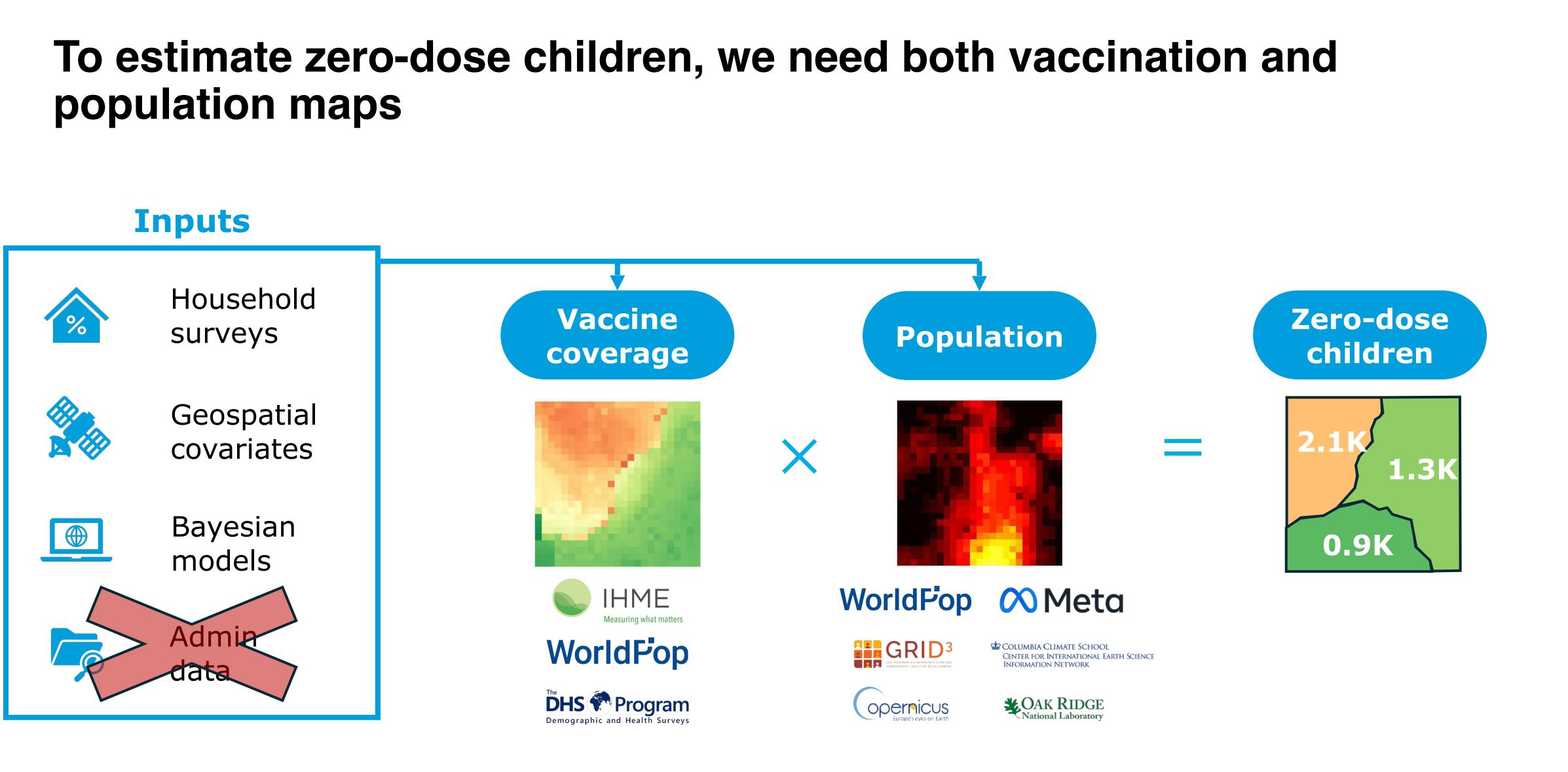
To estimate zero-dose children, we need both vaccination and population maps

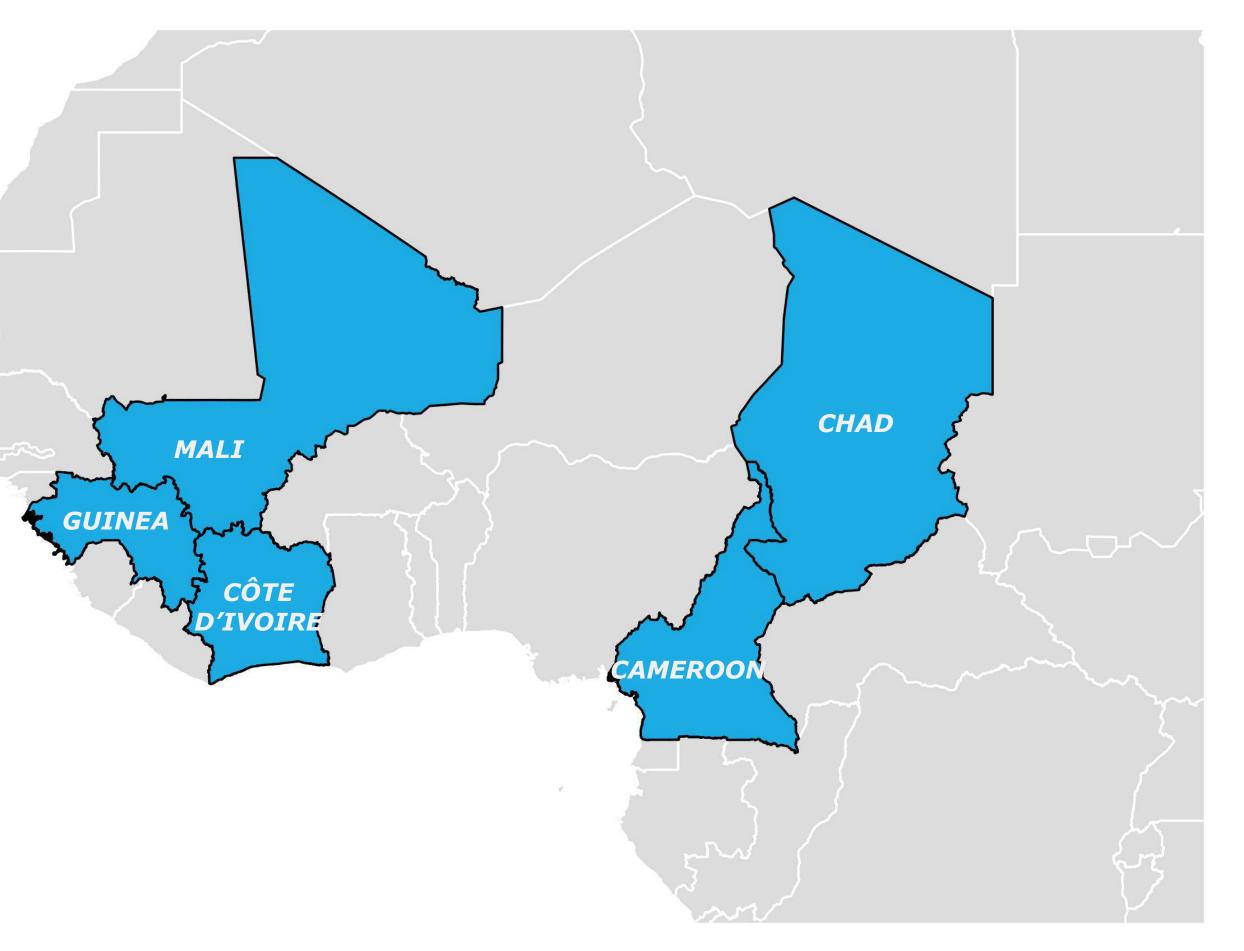


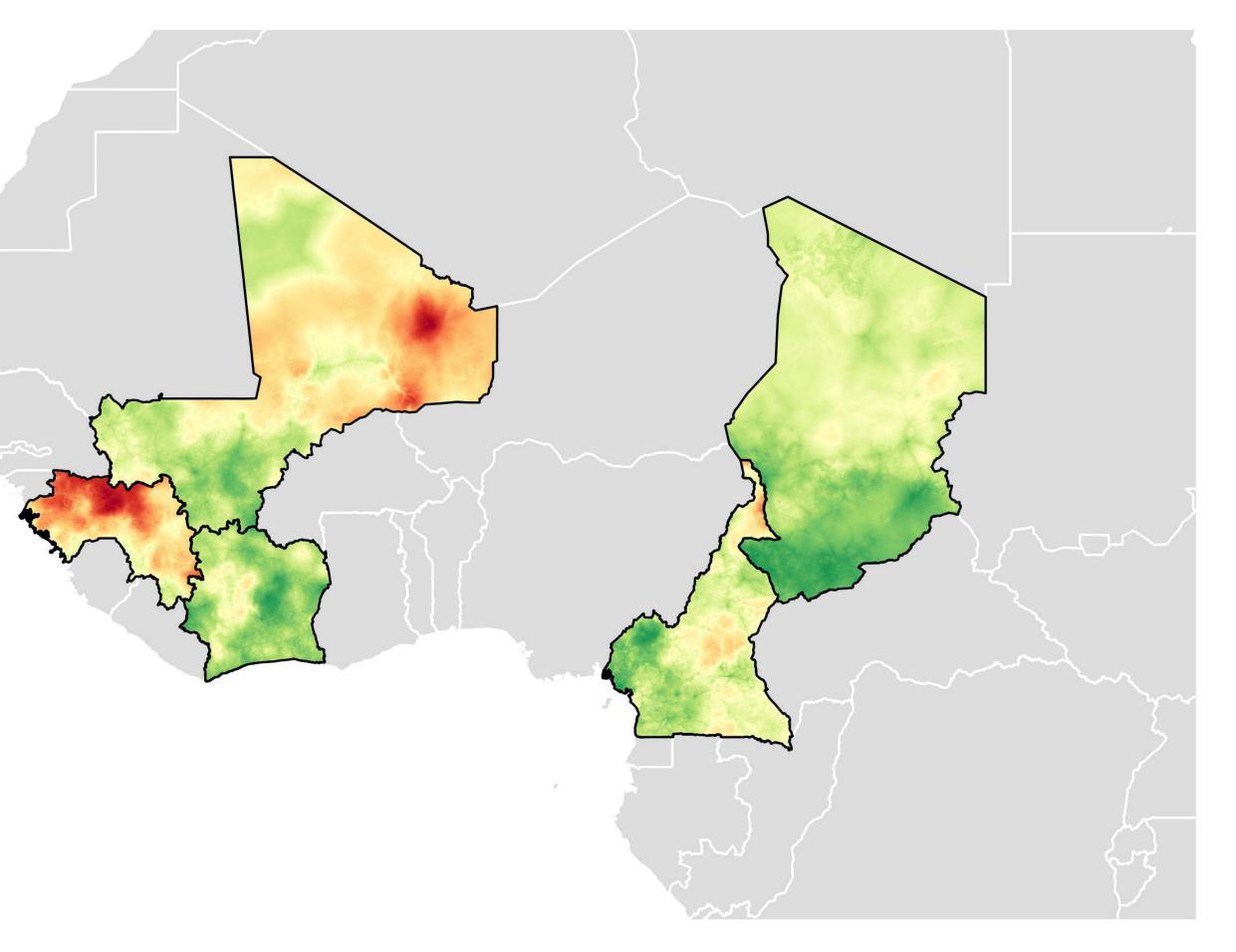


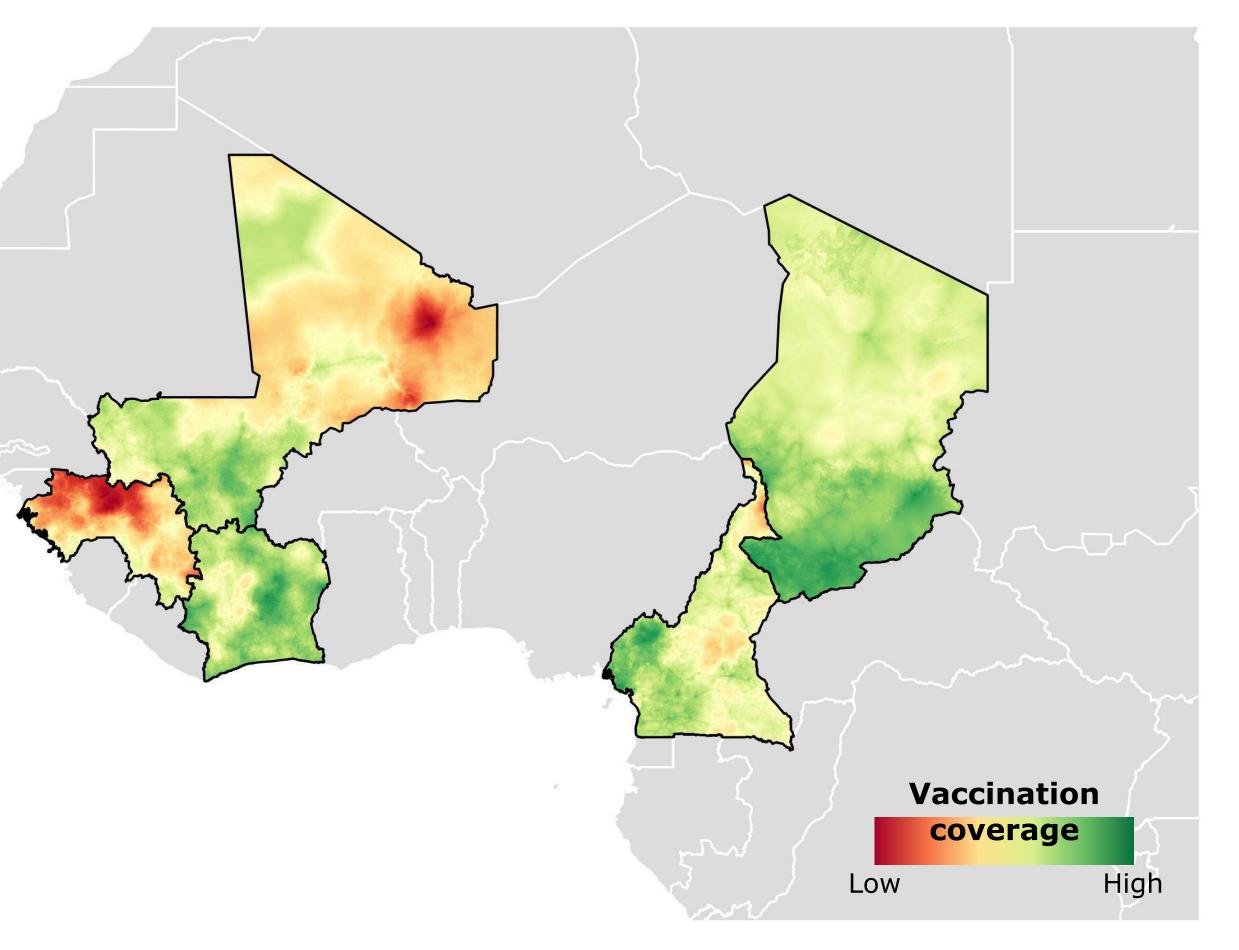




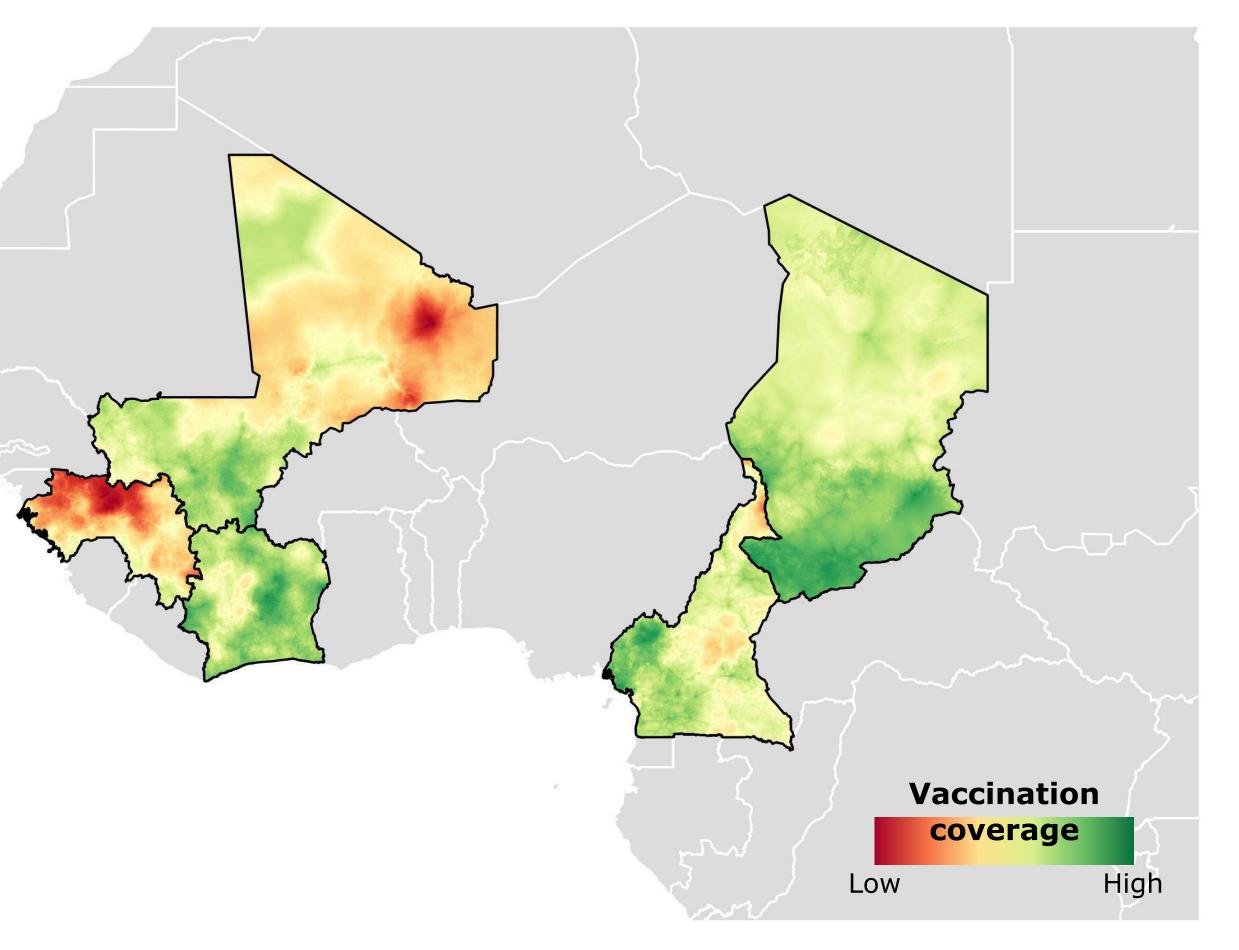






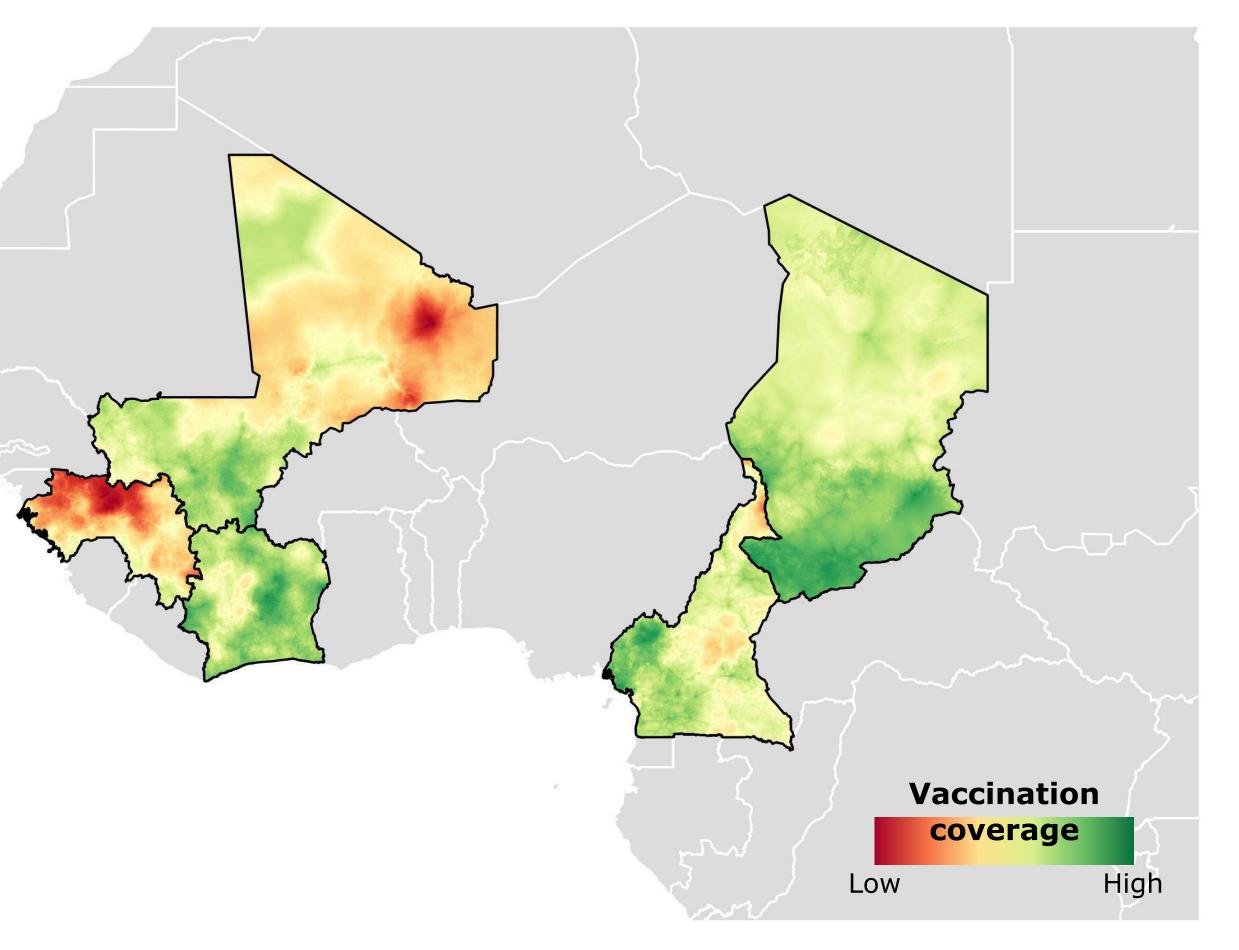


Suitable for use in unique national contexts



Suitable for use in unique national contexts

Consistent with trusted WHO estimates



Understand methodologies and identify sources of variability

Understand methodologies and identify sources of variability

Compare preexisting models and quantify variability

slide credit Martin Bogaert & Tommaso Salvatori

%

Understand methodologies and identify sources of variability

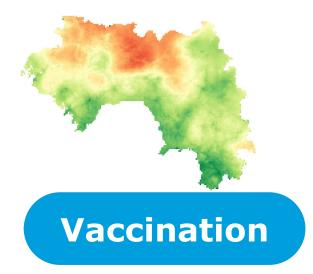
Compare preexisting models and quantify variability

slide credit Martin Bogaert & Tommaso Salvatori

%

Evaluate validity of UNICEF's strategy

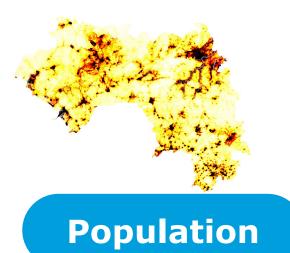
Inputs

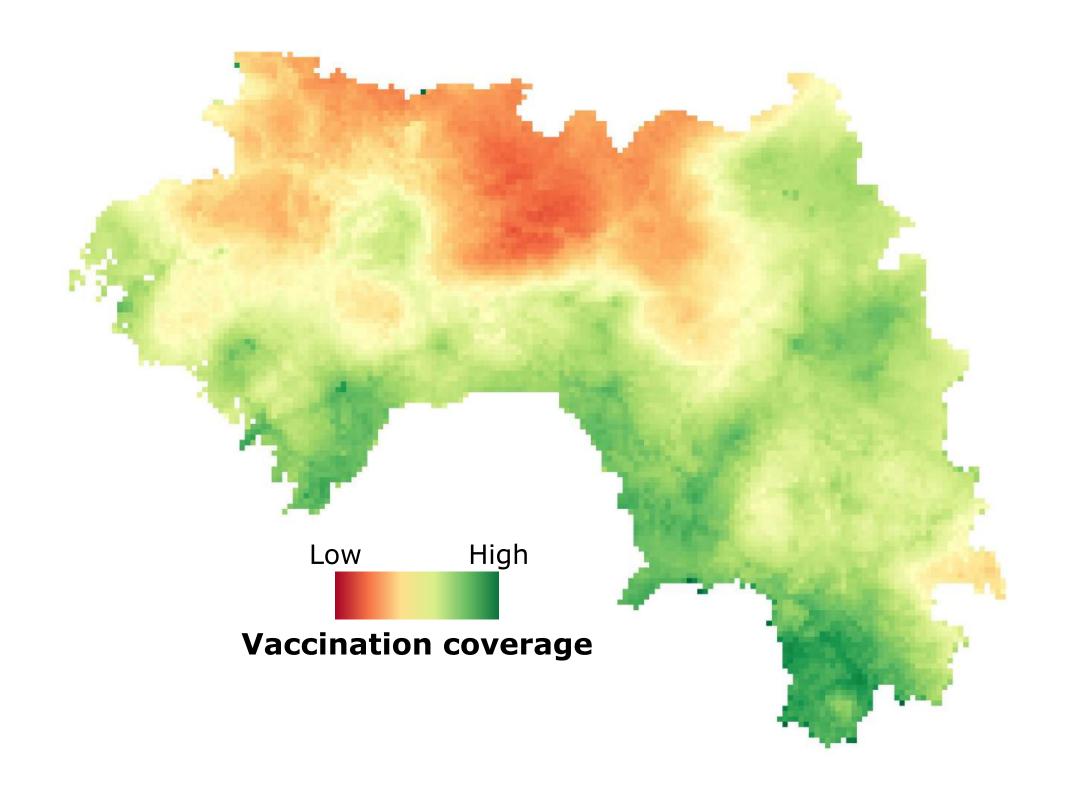


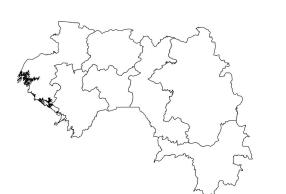
Inputs Vaccination **Population** Regions slide credit Martin Bogaert & Tommaso Salvatori

Inputs

Vaccination

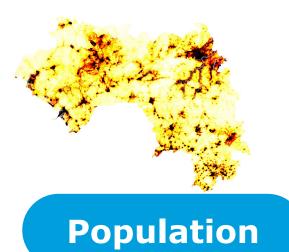


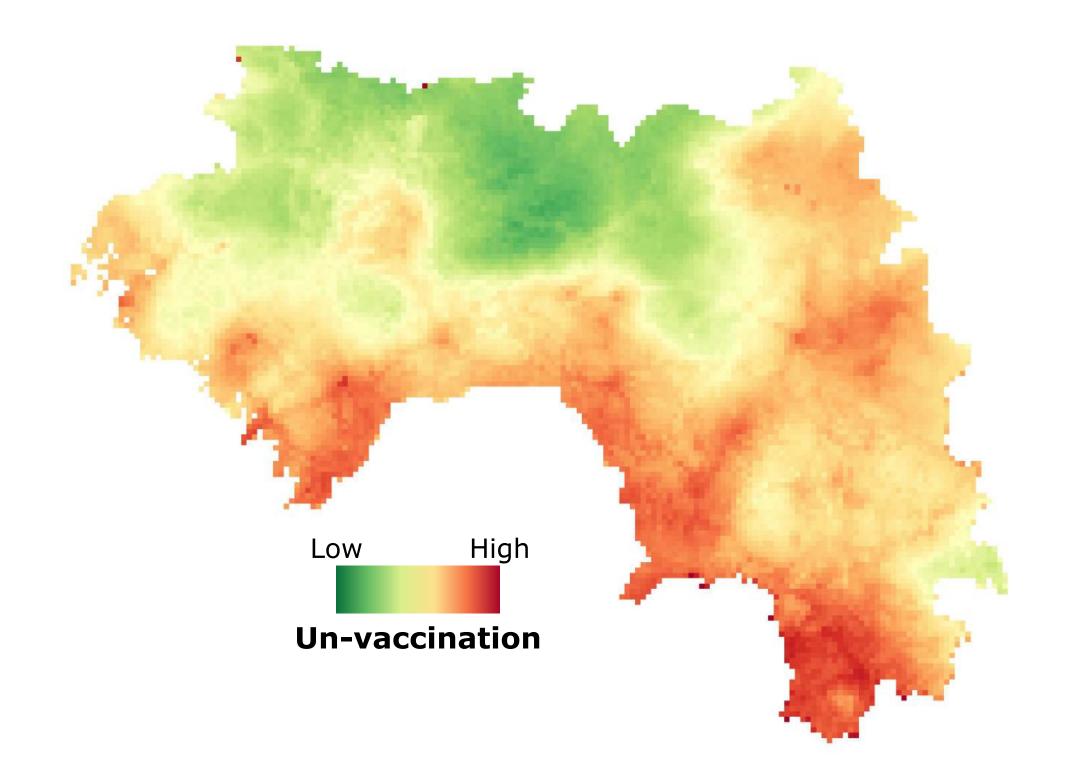


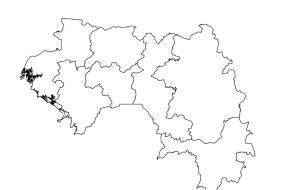


Inputs

Vaccination

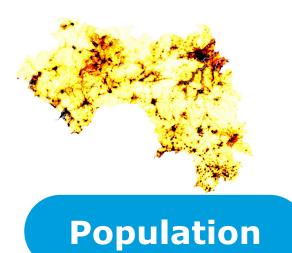


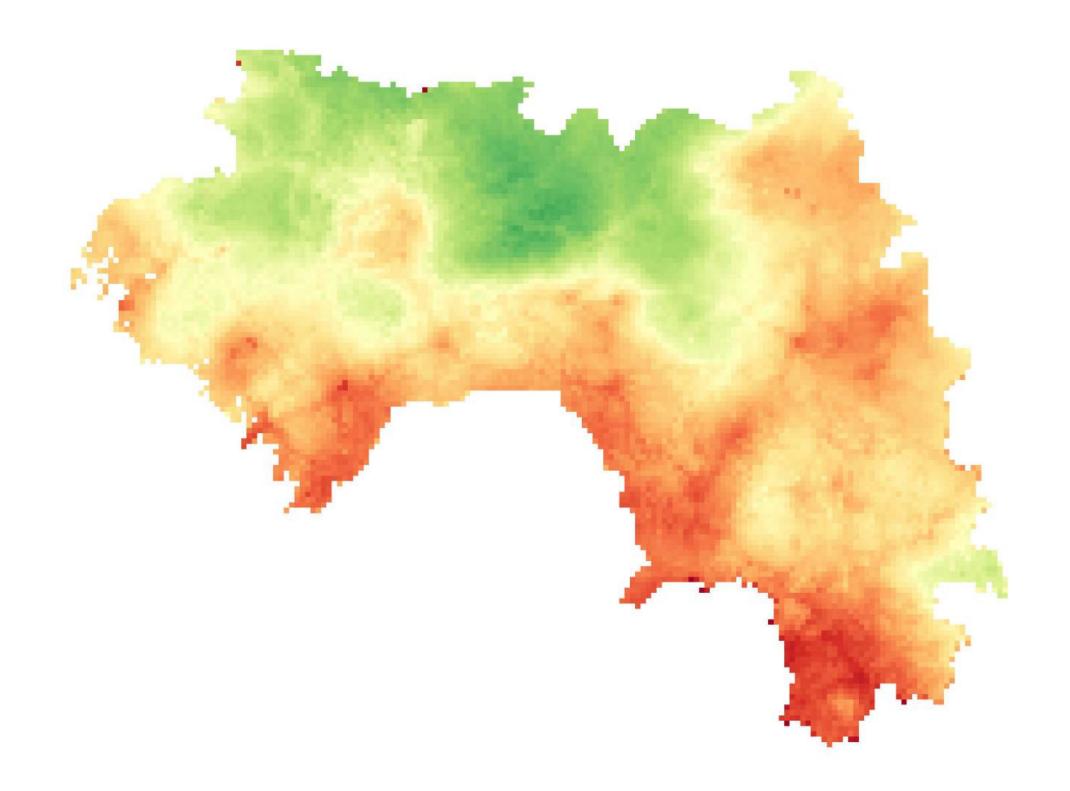


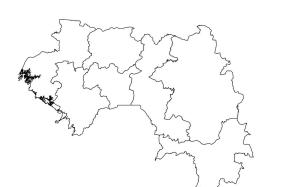


Inputs

Vaccination

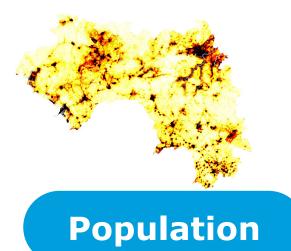


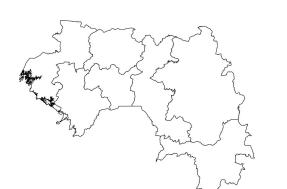


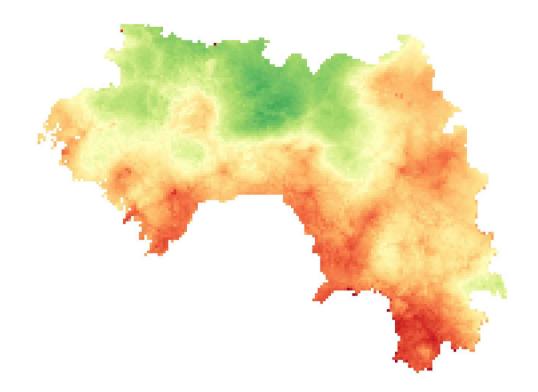


Inputs

Vaccination



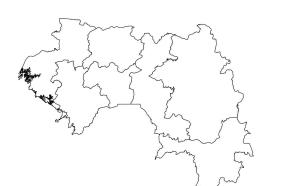


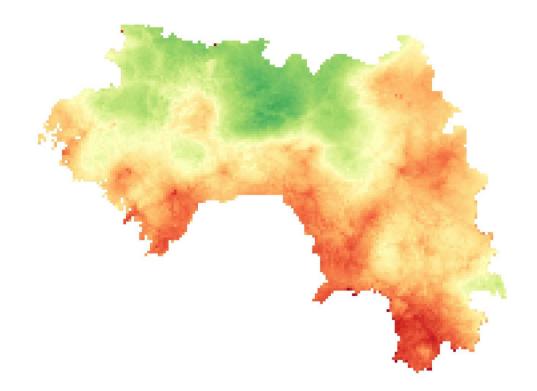


Inputs

Vaccination

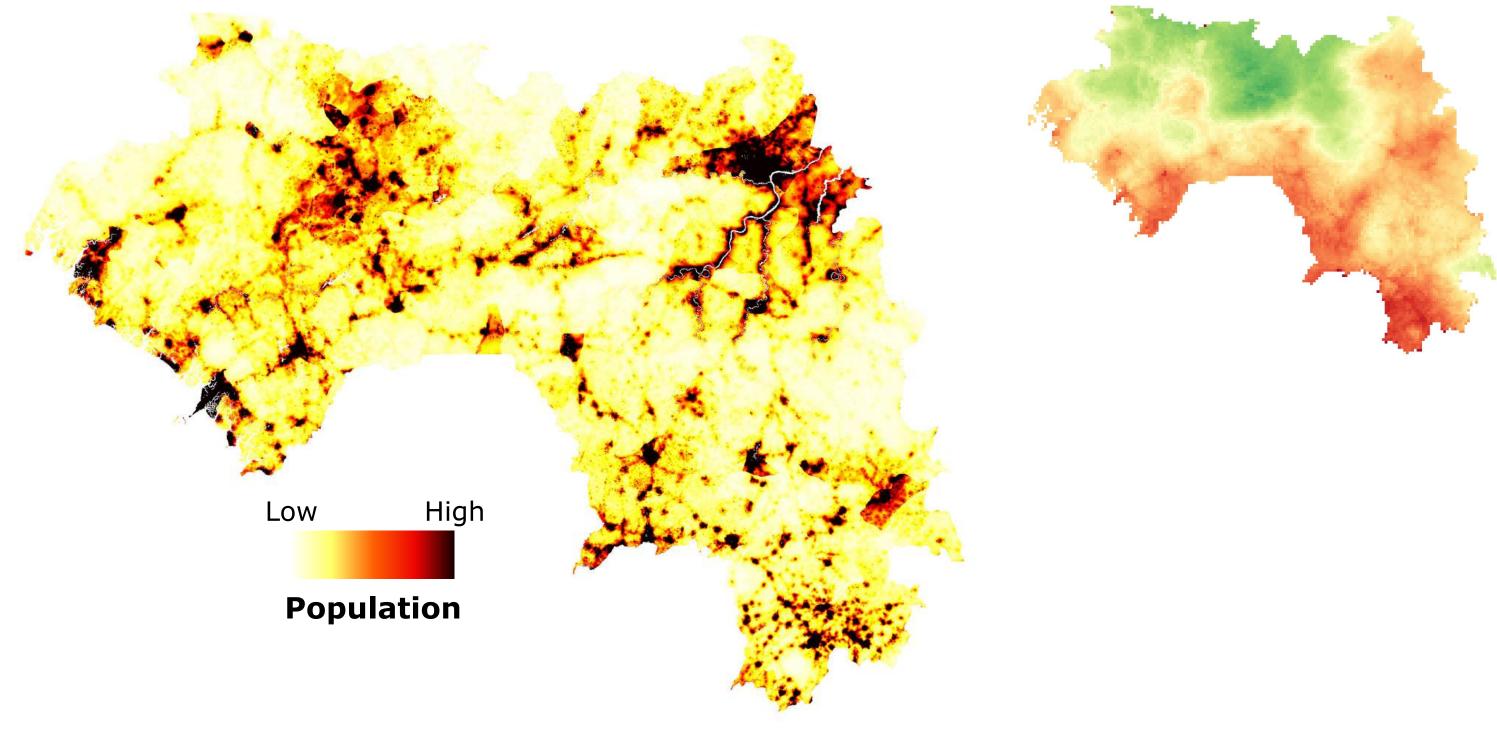






Inputs

Vaccination



Population

the L

Regions slide credit Martin Bogaert & Tommaso Salvatori

100 × **100m**

Inputs

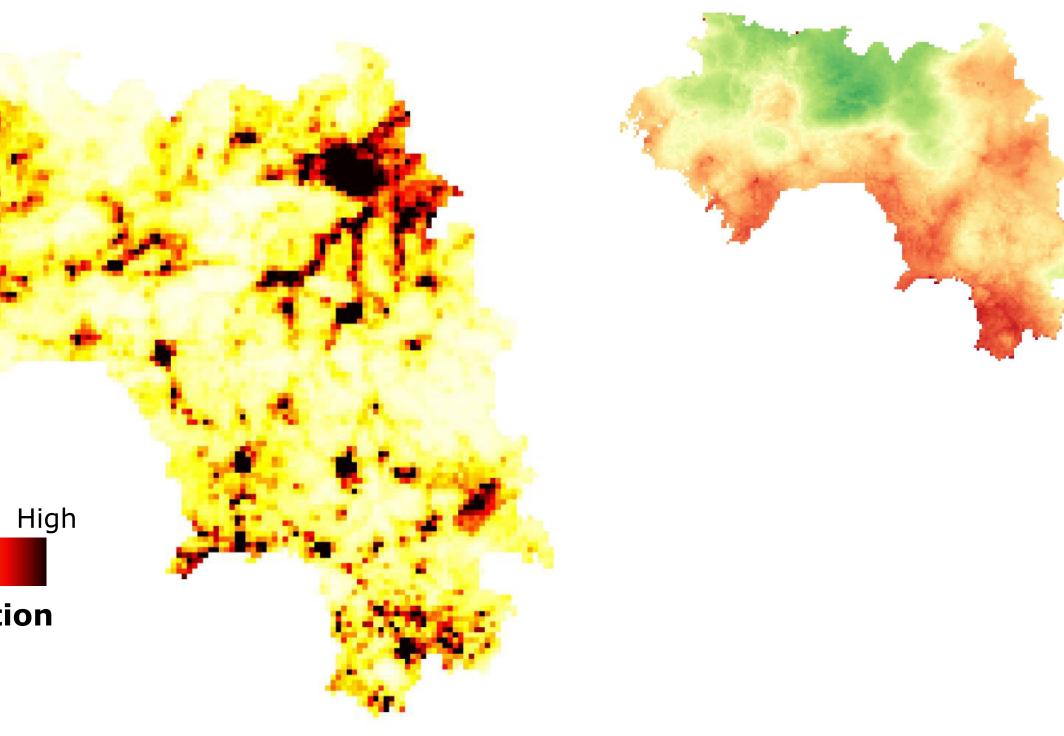
Vaccination

Population

Regions slide credit Martin Bogaert & Tommaso Salvatori Population

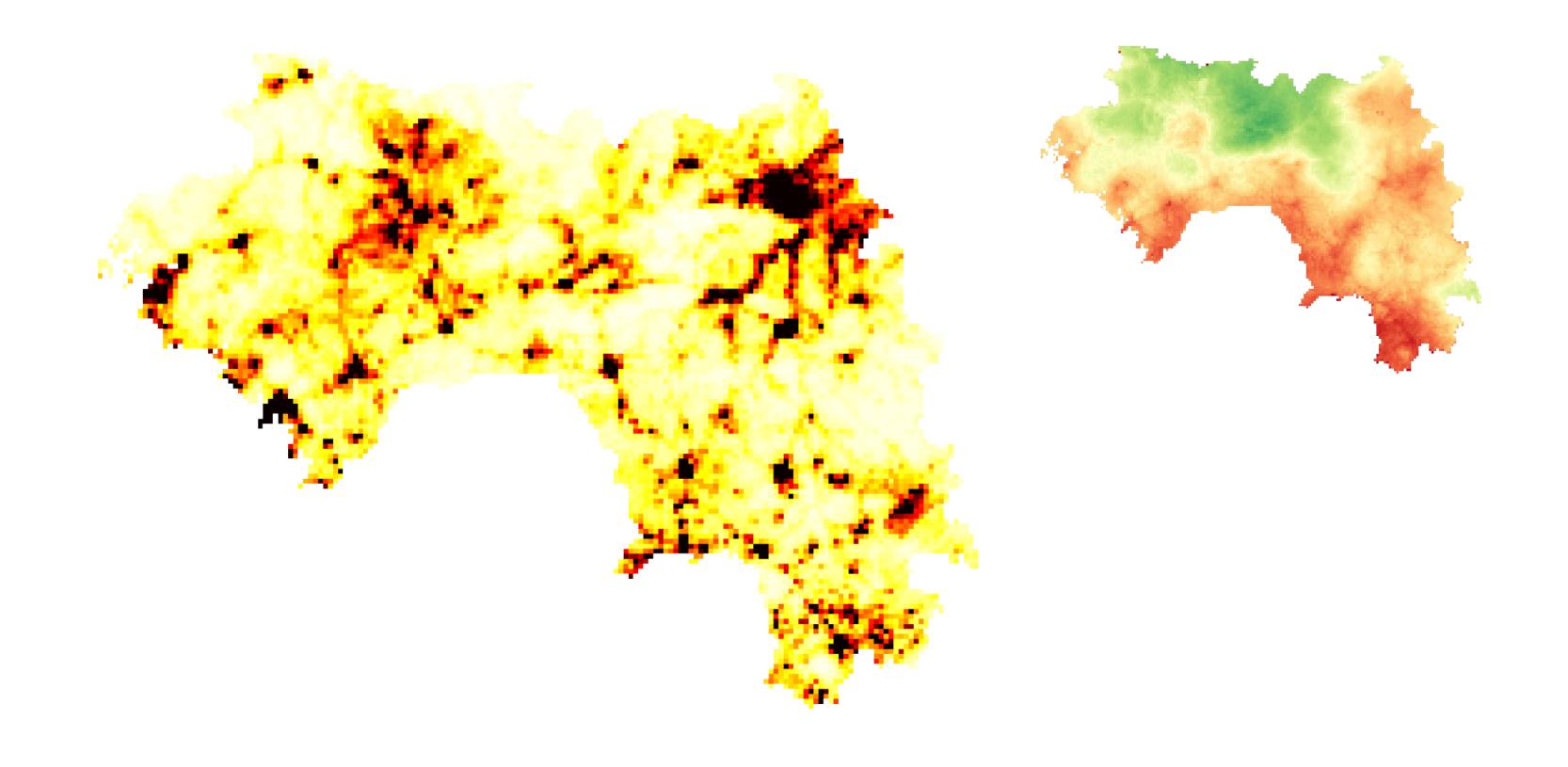
Low

5 × **5km**

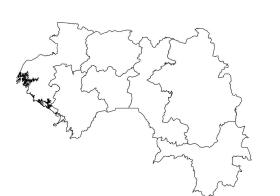


Inputs

Vaccination



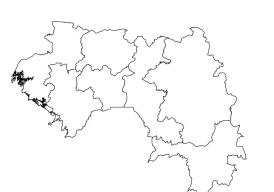
Population

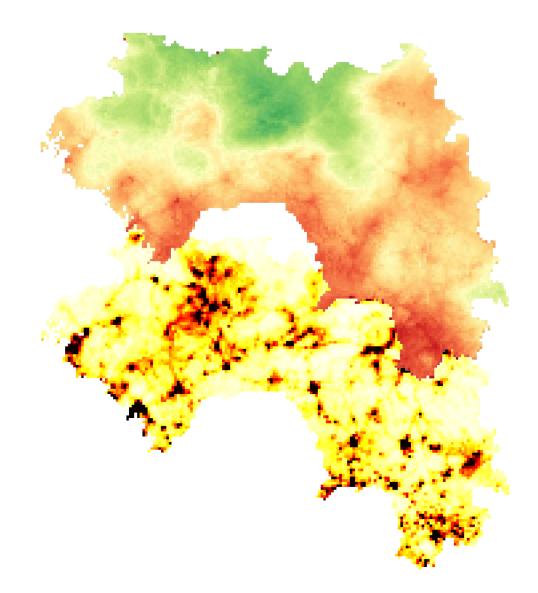


Inputs

Vaccination

Population

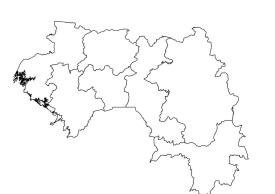


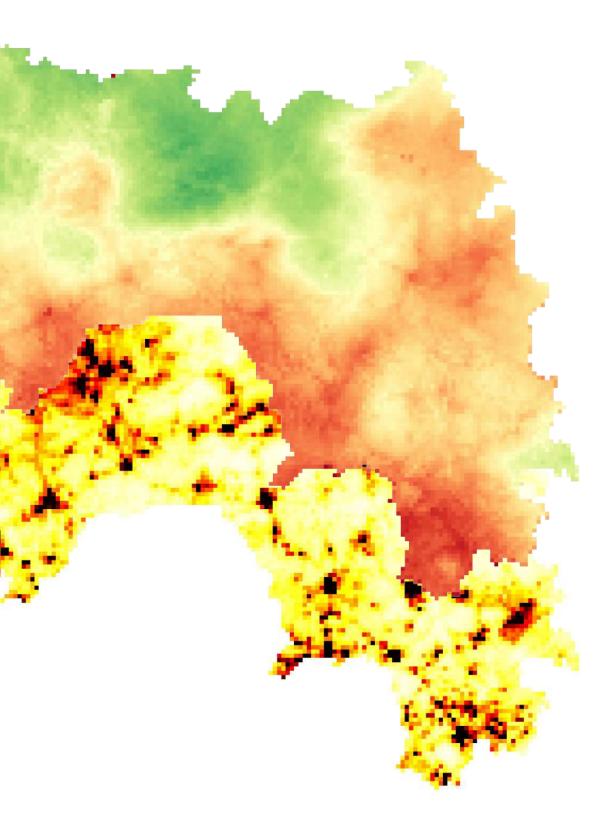


Inputs

Vaccination

Population

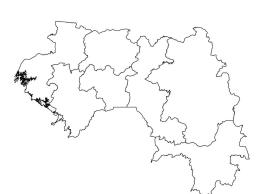




Inputs

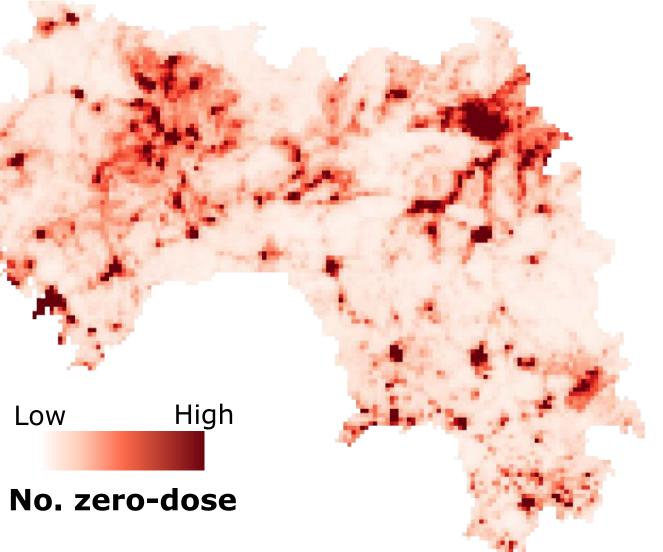
Vaccination

Population



Regions slide credit Martin Bogaert & Tommaso Salvatori

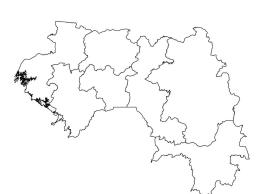
Low



Inputs

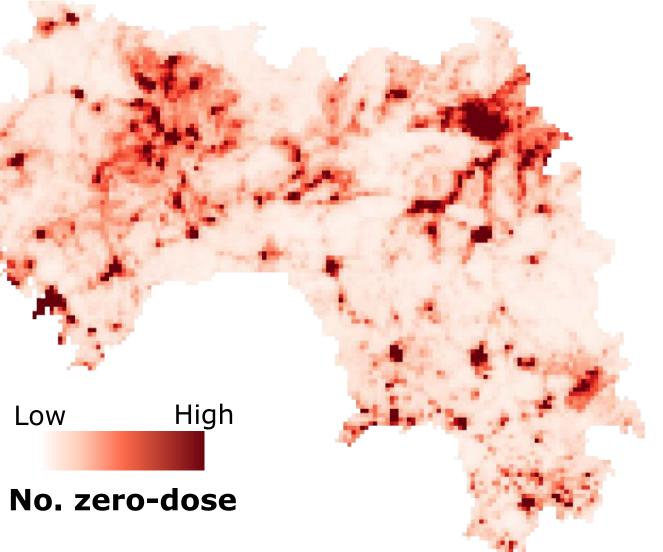
Vaccination

Population



Regions slide credit Martin Bogaert & Tommaso Salvatori

Low

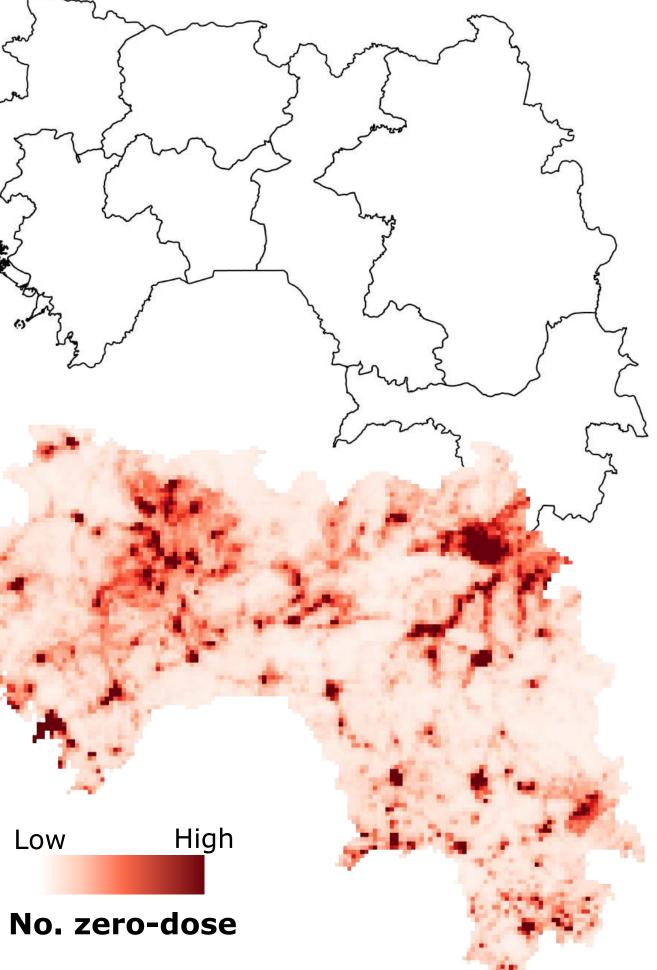


Inputs

Vaccination

Population

Low

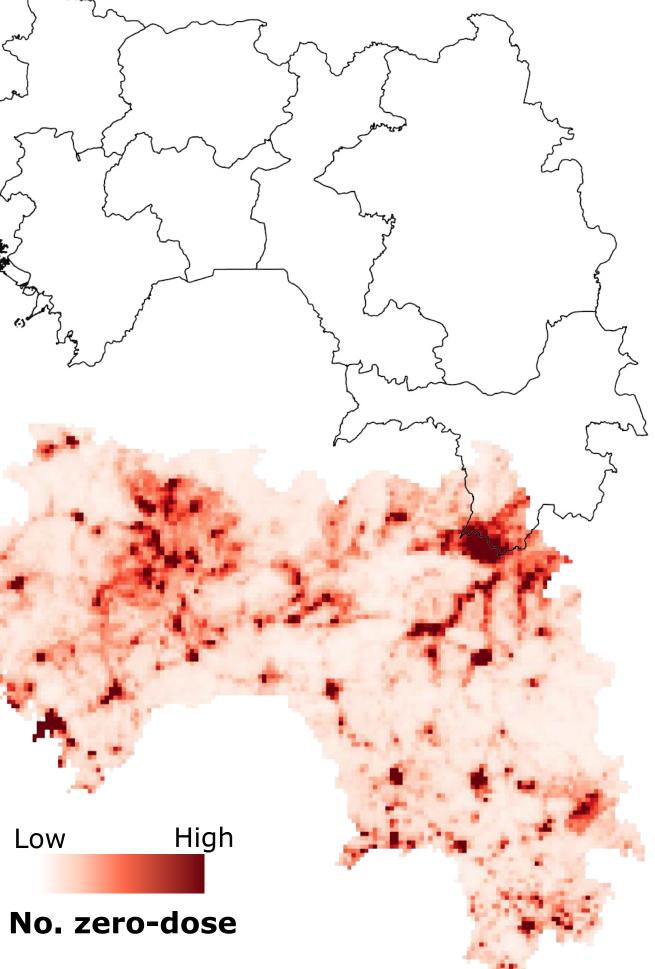


Inputs

Vaccination

Population

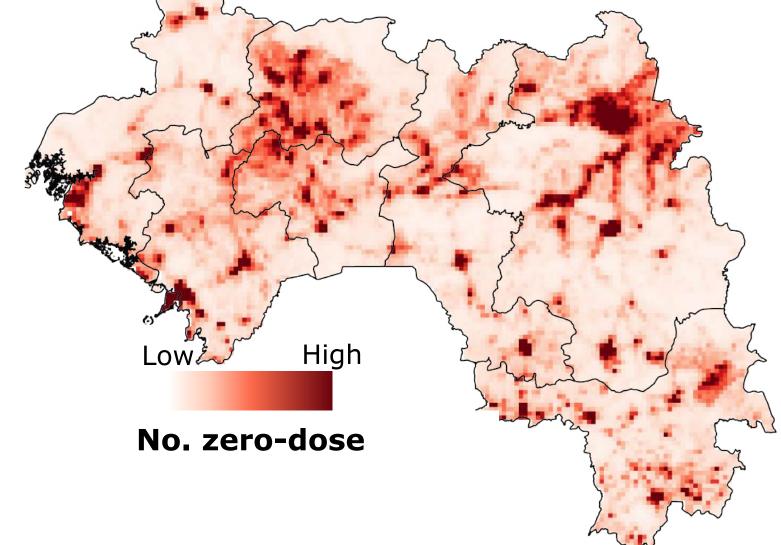
Low



Inputs

Vaccination

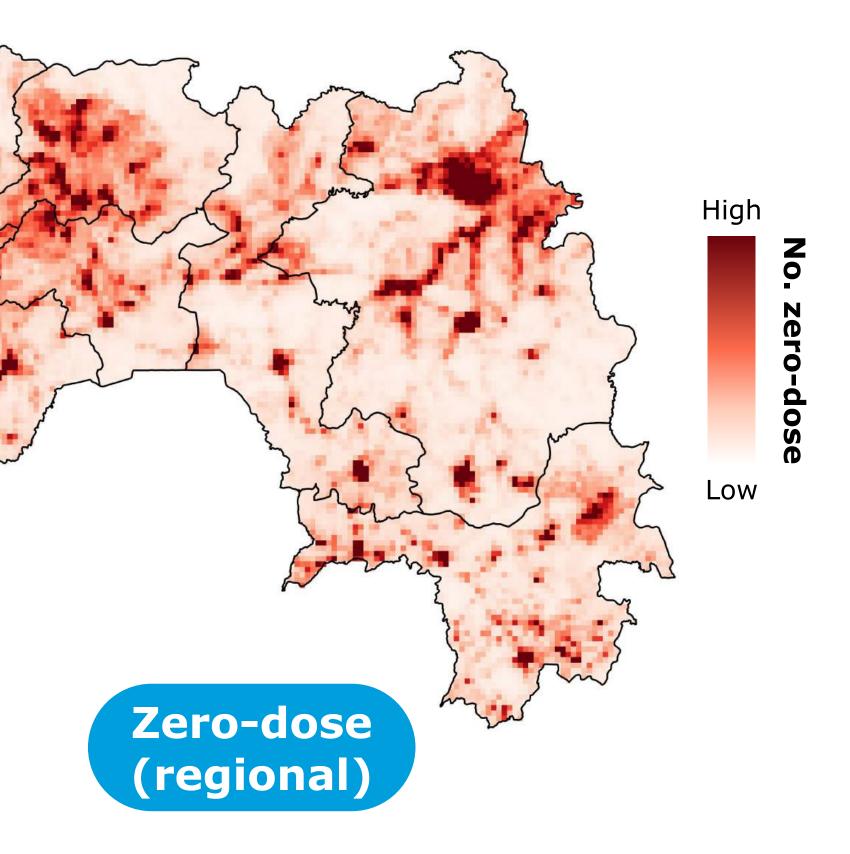
Population



Inputs

Vaccination

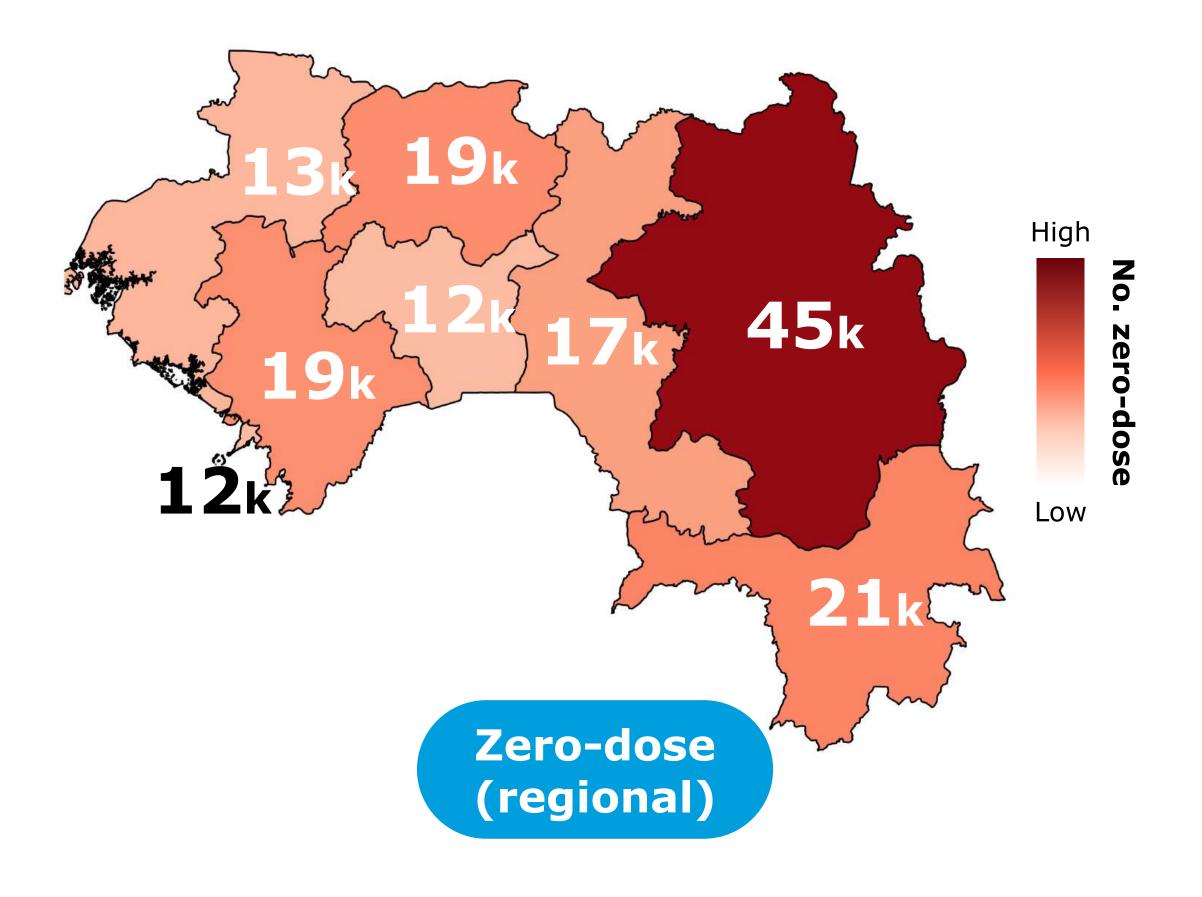
Population



Inputs

Vaccination

Population



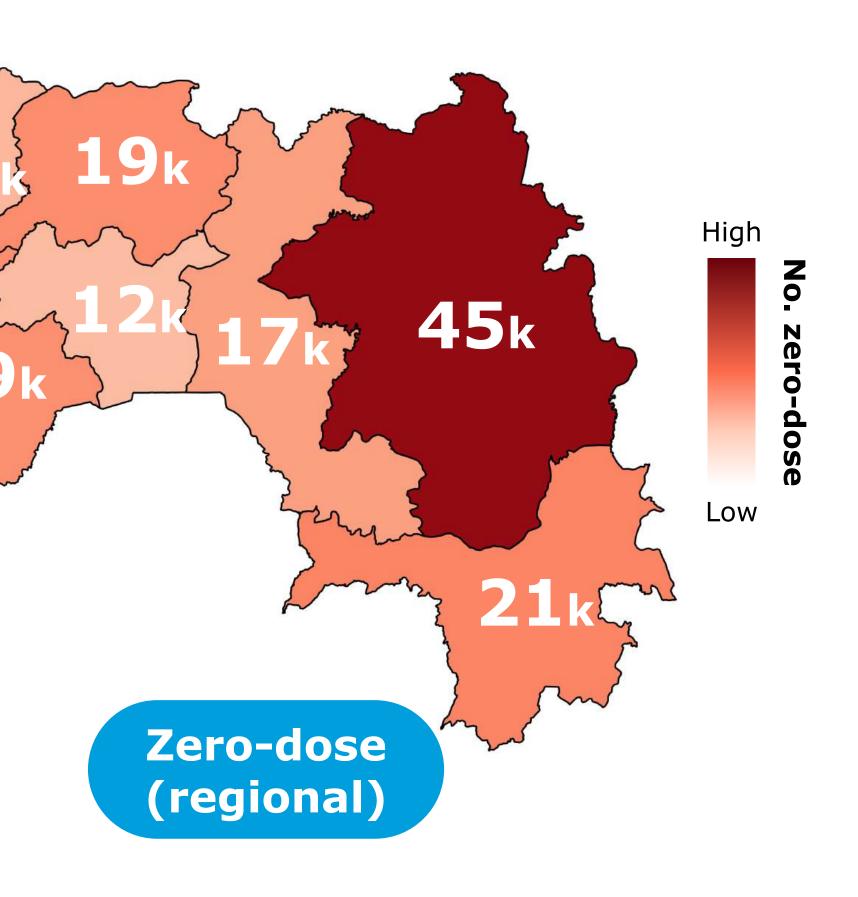
Inputs

Vaccination

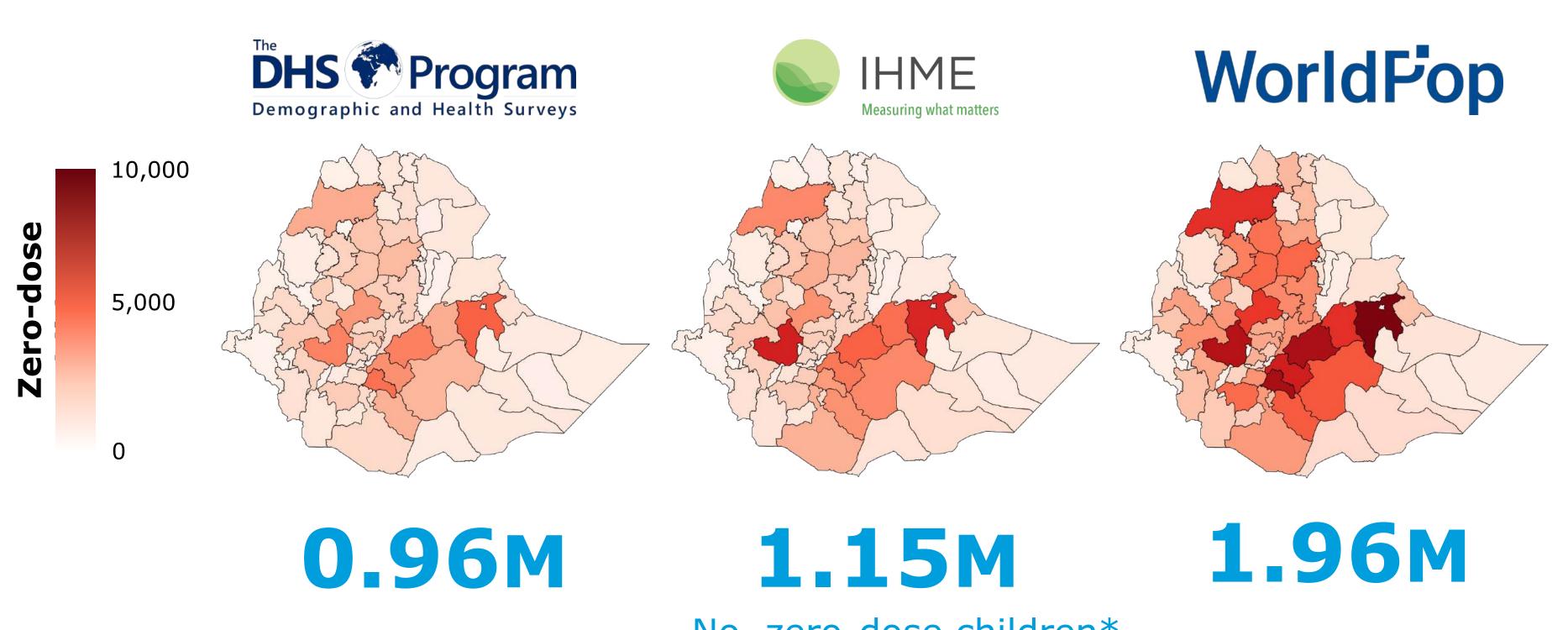
Population

Zero-dose (national)

159K



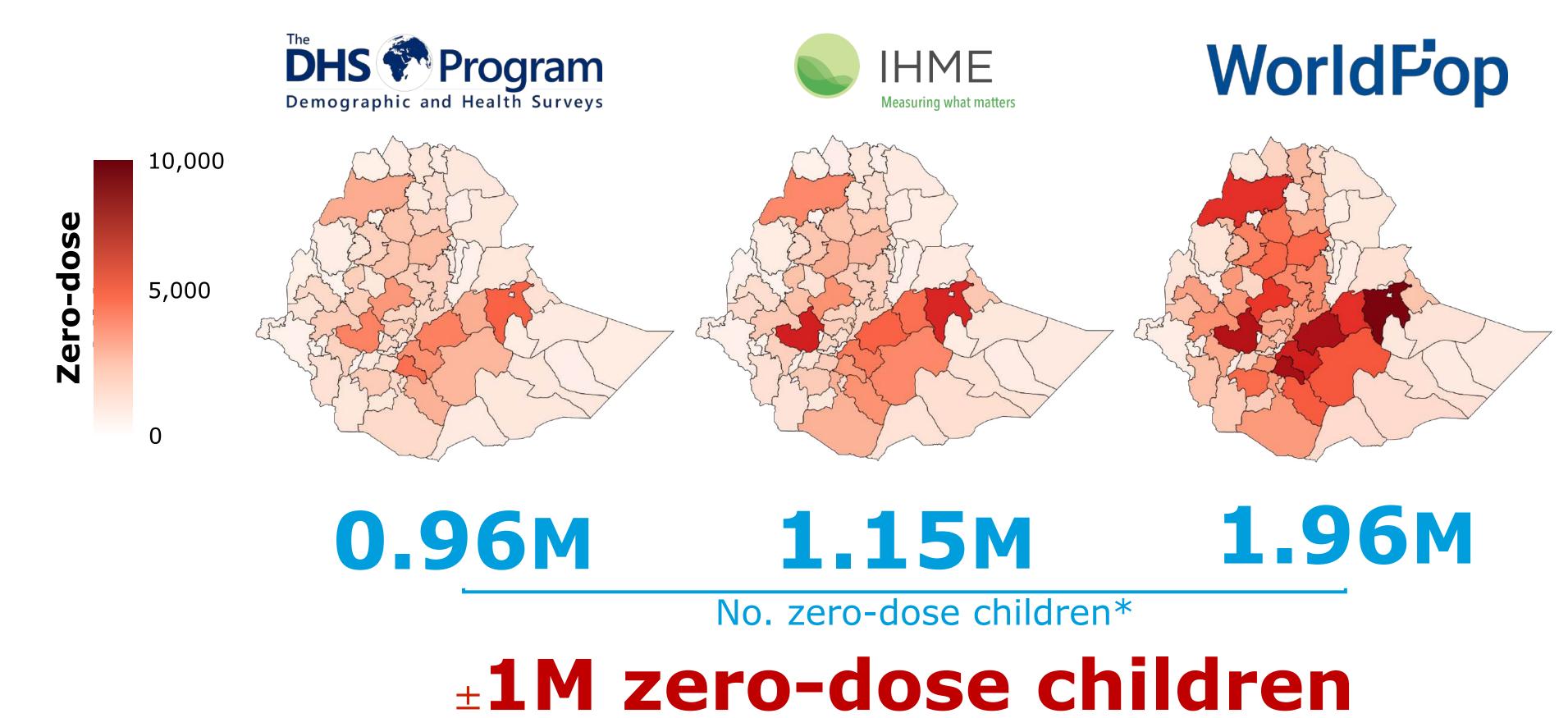
Consider Ethiopia: existing models disagree by as much as 1M children



slide credit Martin Bogaert & Tommaso Salvatori

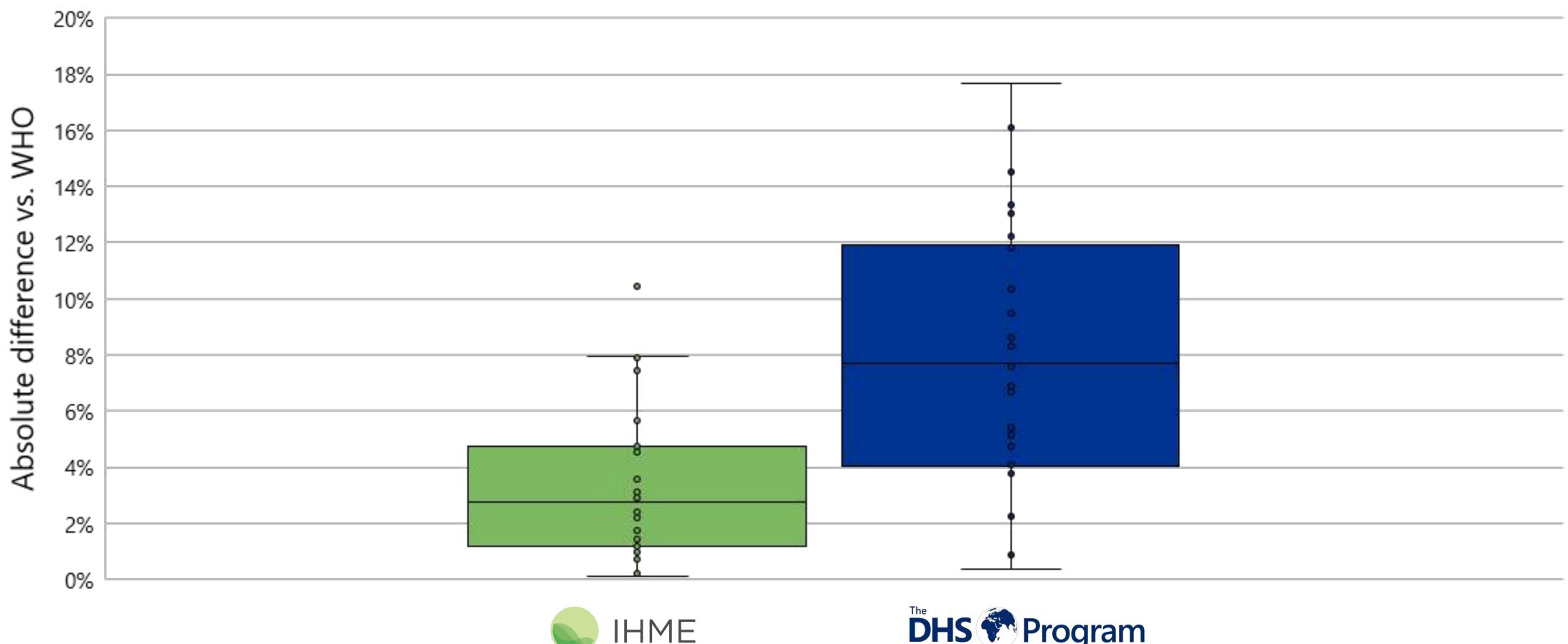
No. zero-dose children*

Consider Ethiopia: existing models disagree by as much as 1M children



This discrepancy is systemic, making it hard for decision-makers to know which model to trust

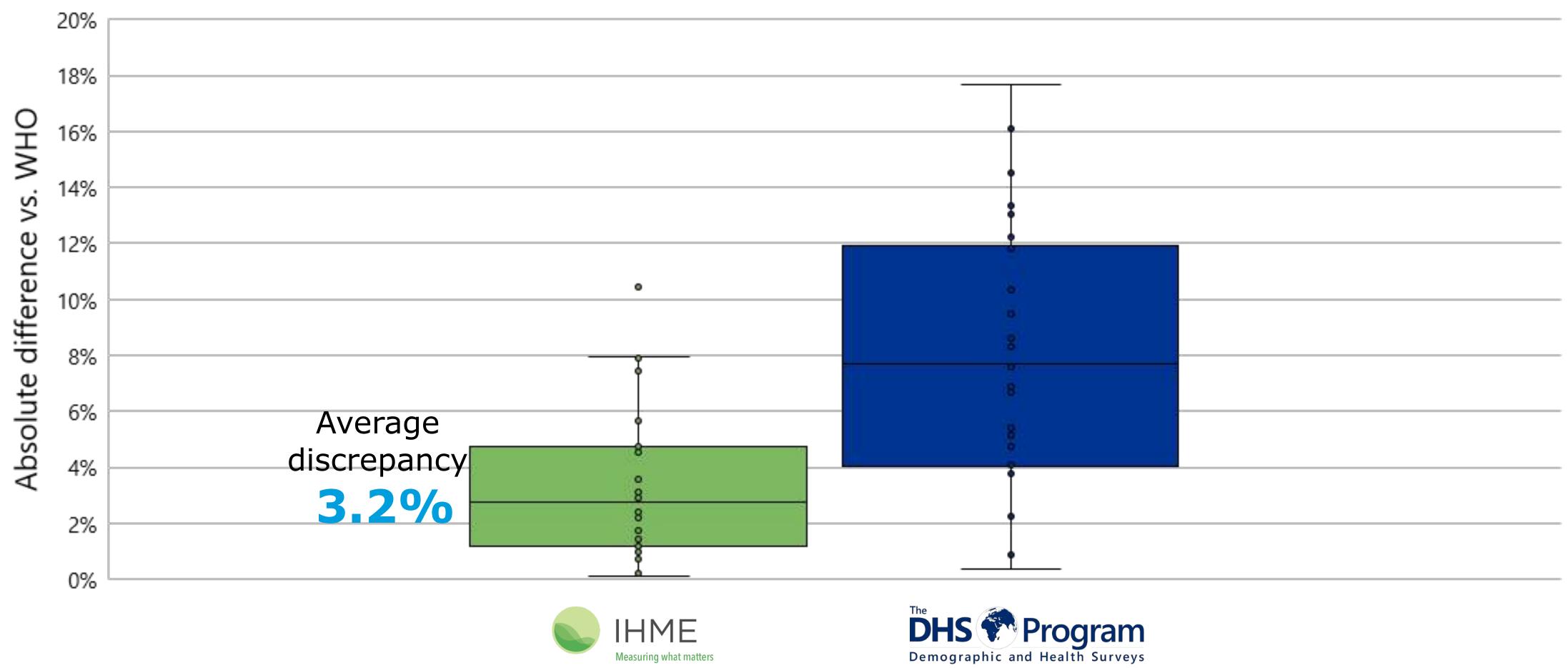
Distribution of absolute differences of national vaccination coverage to WHO estimates, across 34 countries



Measuring what matter

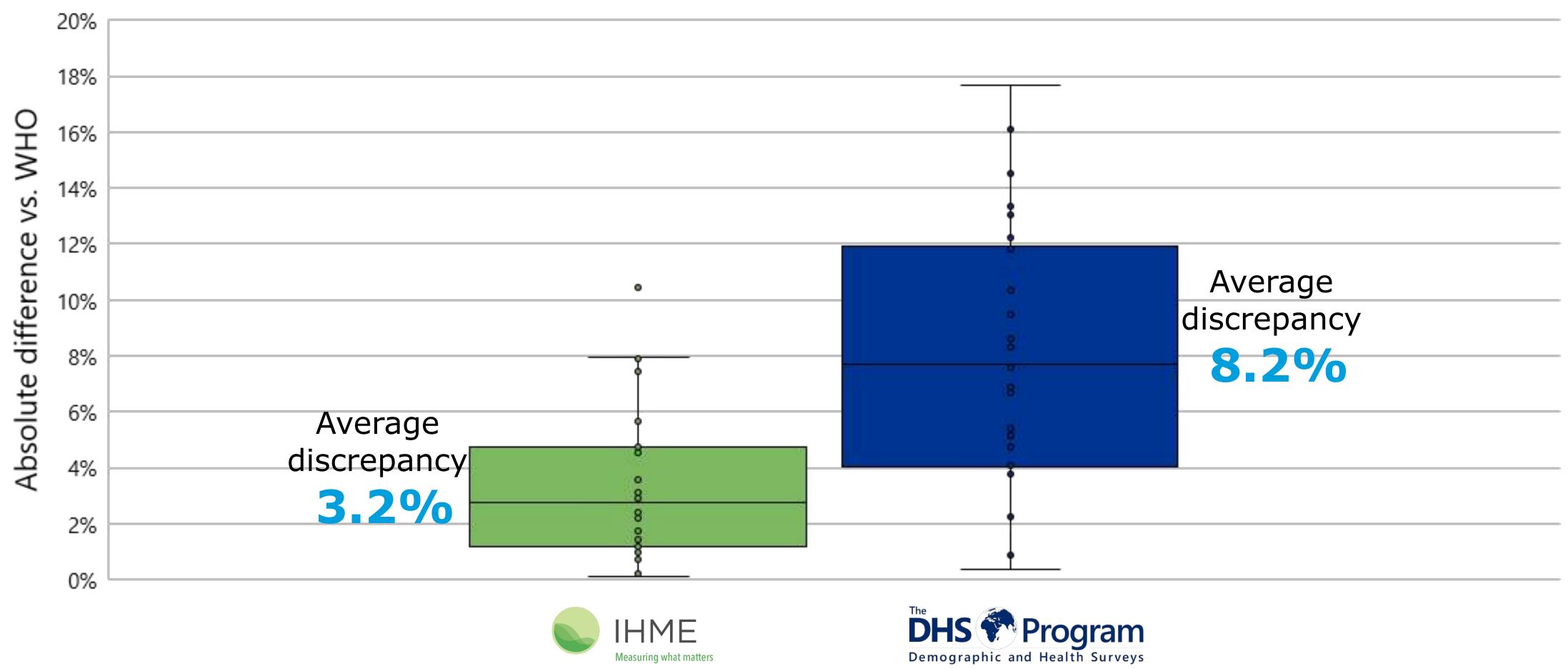
This discrepancy is systemic, making it hard for decision-makers to know which model to trust

Distribution of absolute differences of national vaccination coverage to WHO estimates, across 34 countries



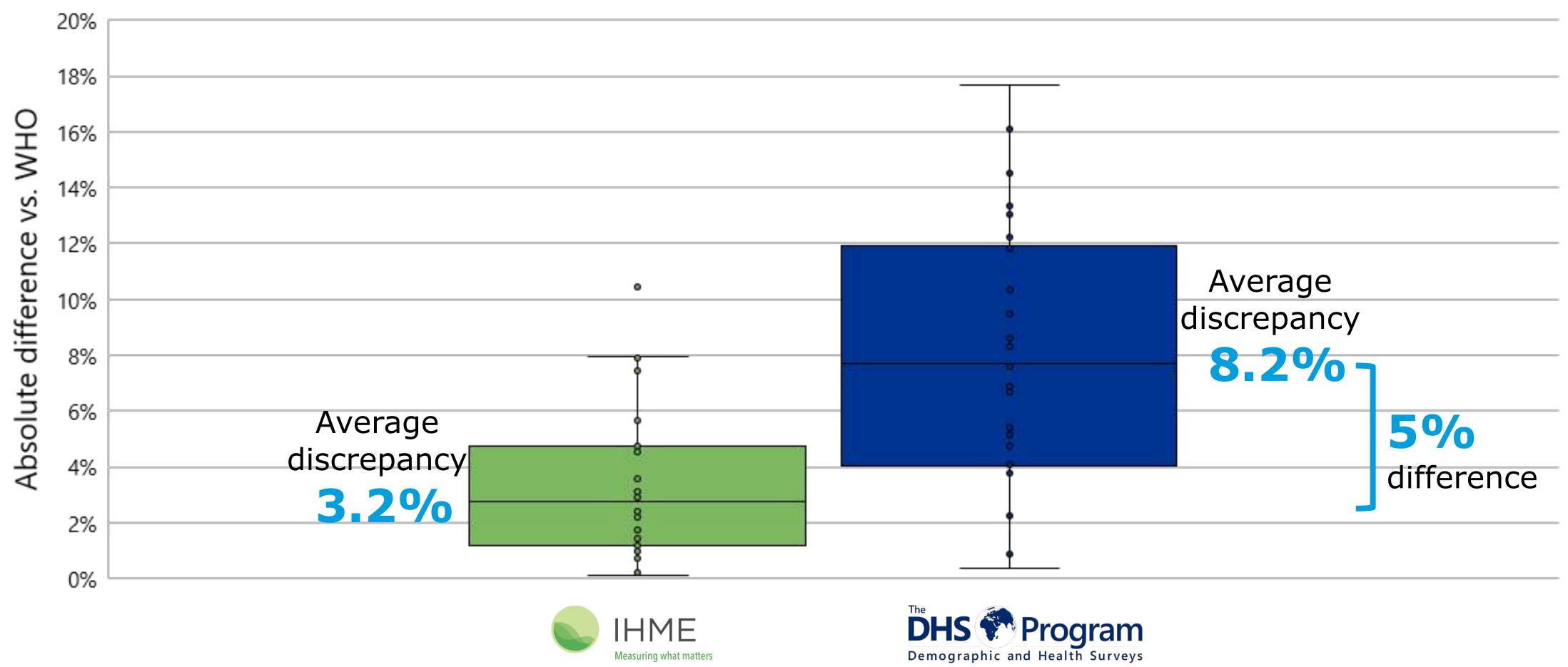
This discrepancy is systemic, making it hard for decision-makers to know which model to trust

Distribution of absolute differences of national vaccination coverage to WHO estimates, across 34 countries



This discrepancy is systemic, making it hard for decision-makers to know which model to trust

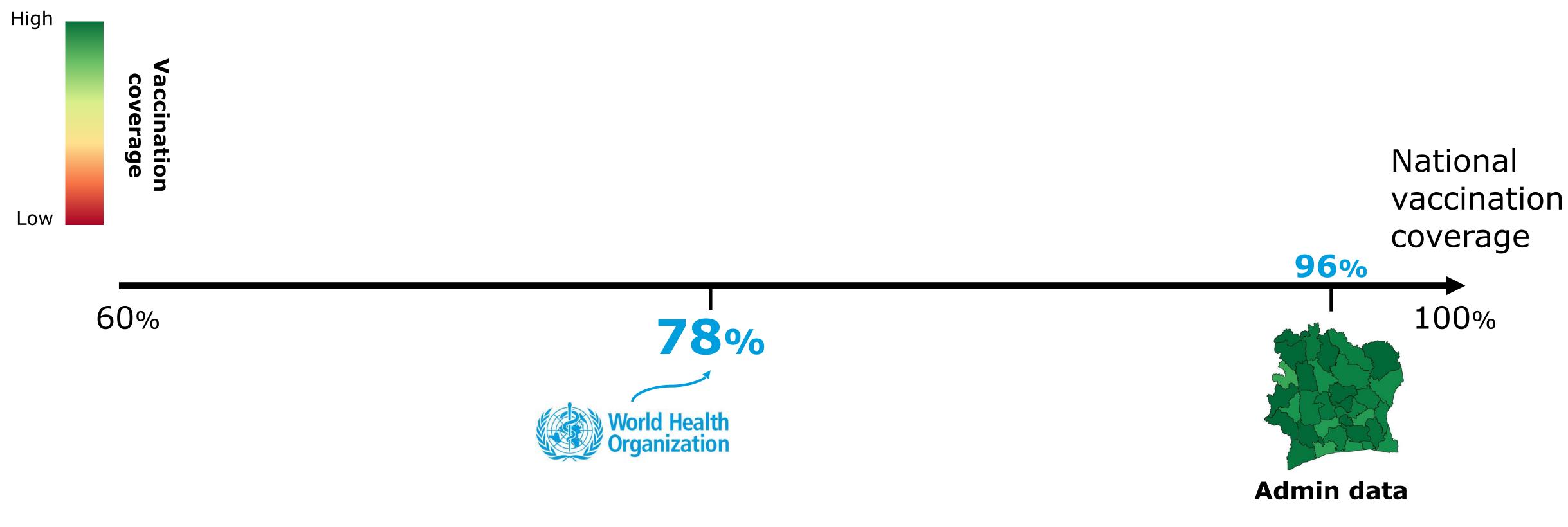
Distribution of absolute differences of national vaccination coverage to WHO estimates, across 34 countries

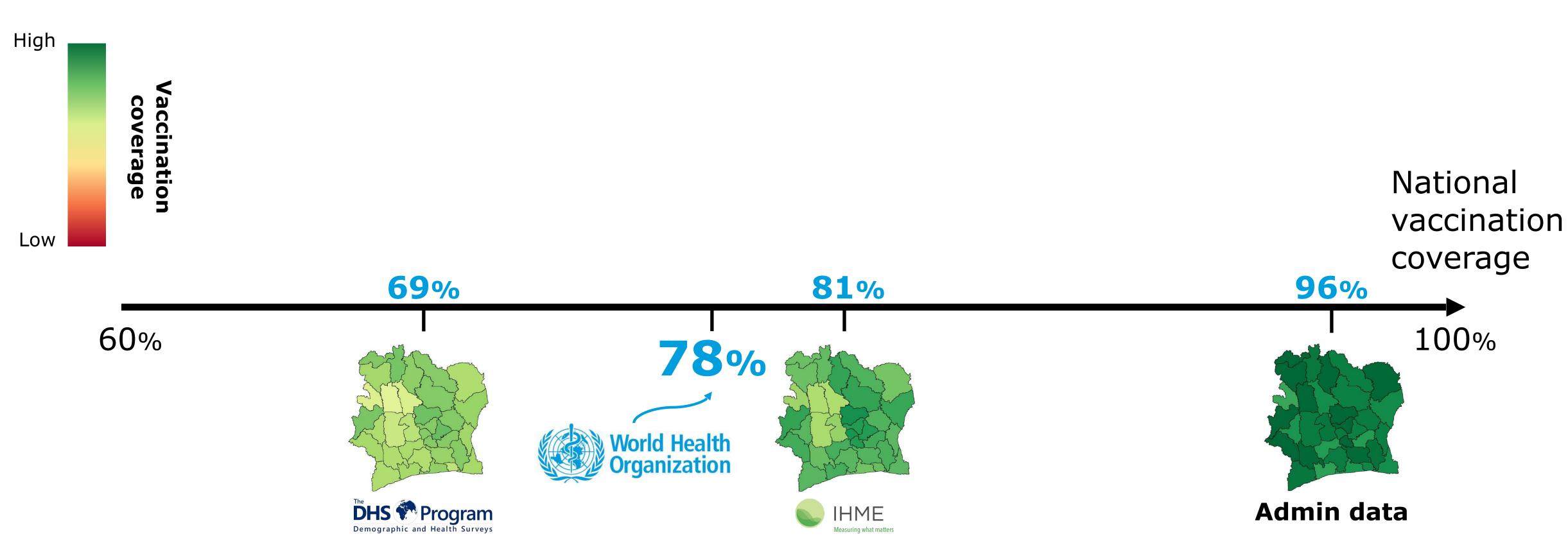


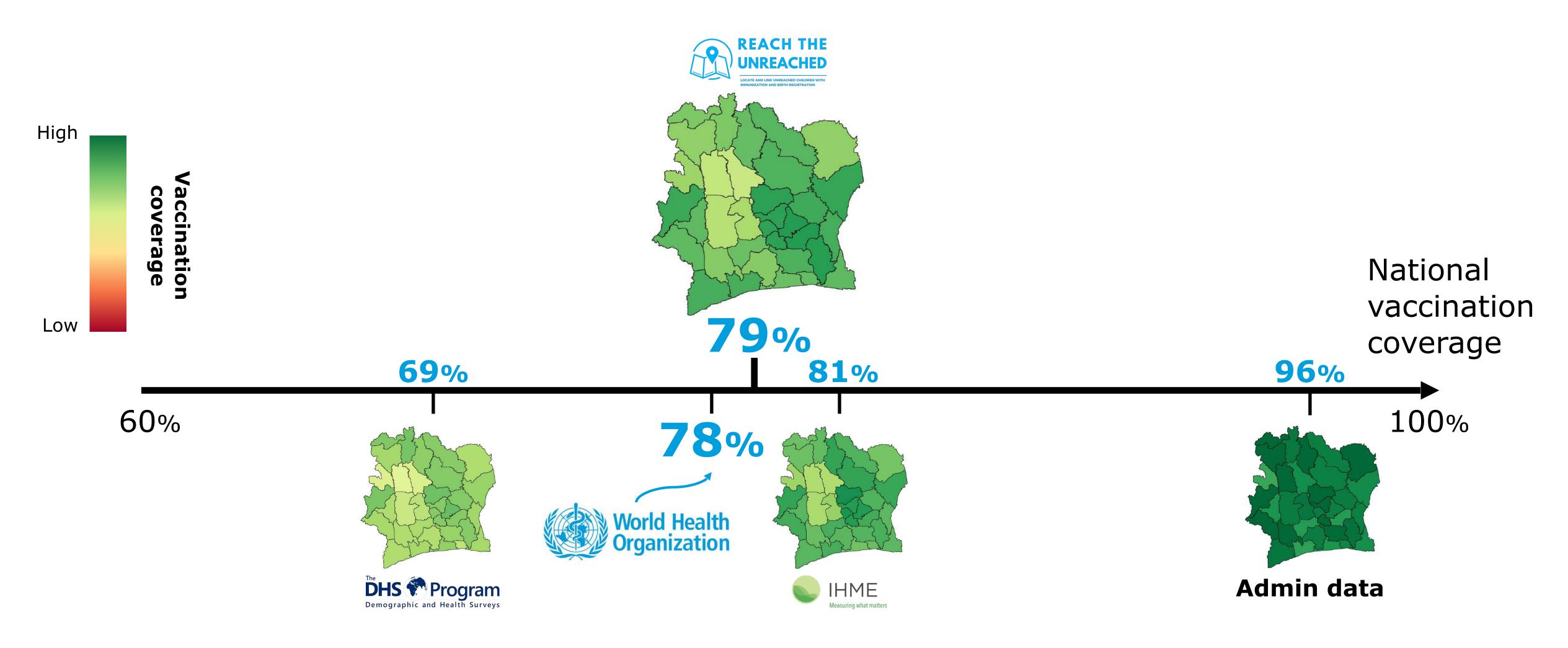
slide credit Martin Bogaert & Tommaso Salvatori

National vaccination coverage

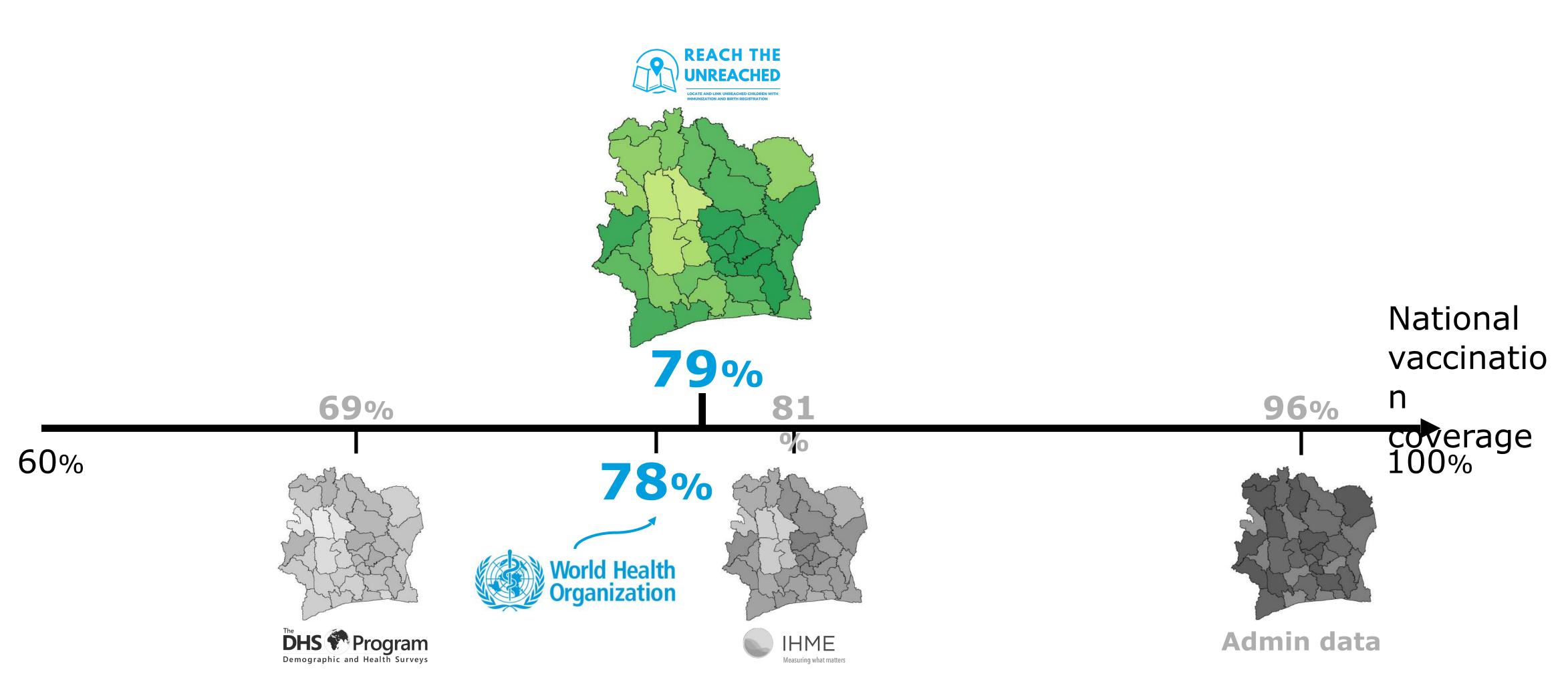
100%





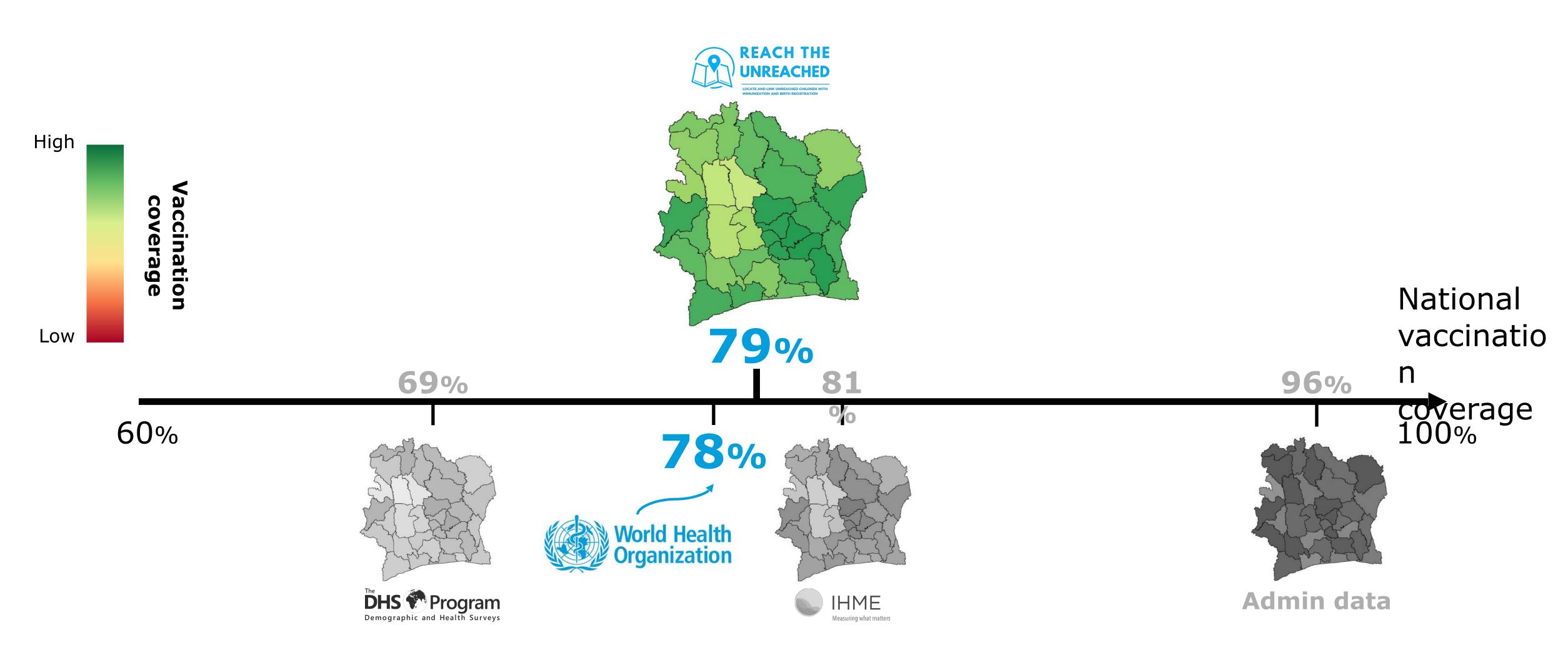


RtU's model aligns the closest with WHO estimates



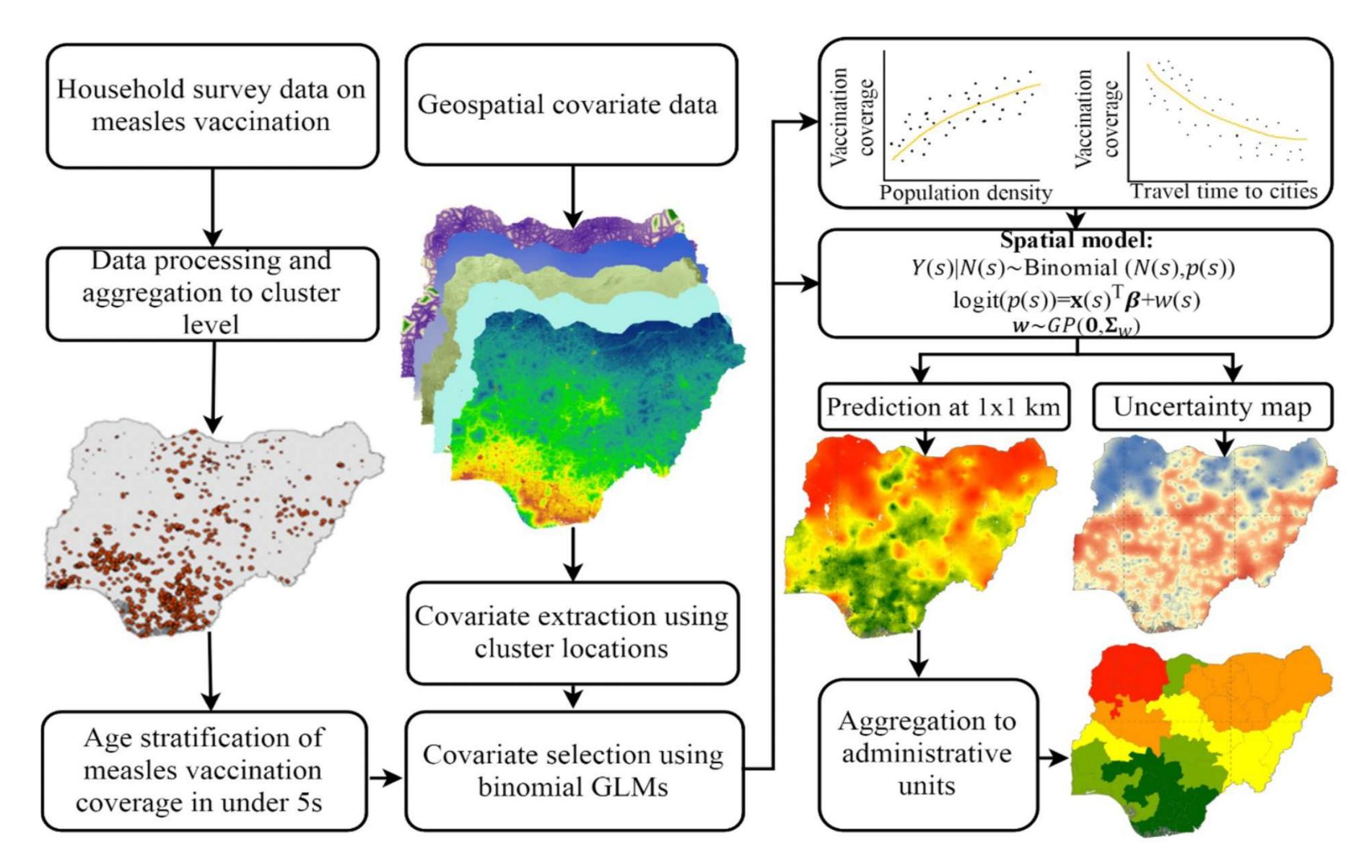
https://data.unicef.org/resources/reaching-the-unreached-with-life-saving-vaccines-through-data-science-and-geospatial-technologies/

RtU's model aligns the closest with WHO estimates



https://data.unicef.org/resources/reaching-the-unreached-with-life-saving-vaccines-through-data-science-and-geospatial-technologies/

WorldFop

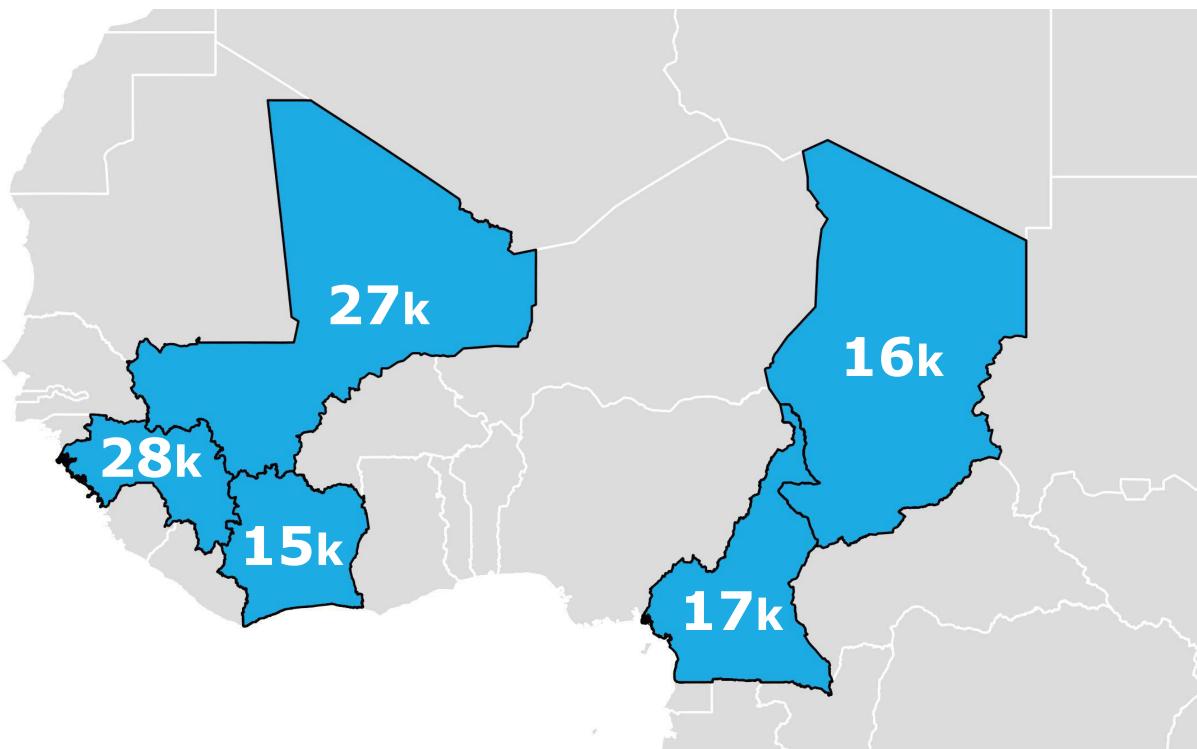


https://github.com/wpgp/RtU_vaccination_modelling/tree/main

What's at stake?

103,000 child deaths could be avoided every year in the 5 countries by achieving 95% coverage

slide credit Martin Bogaert & Tommaso Salvatori



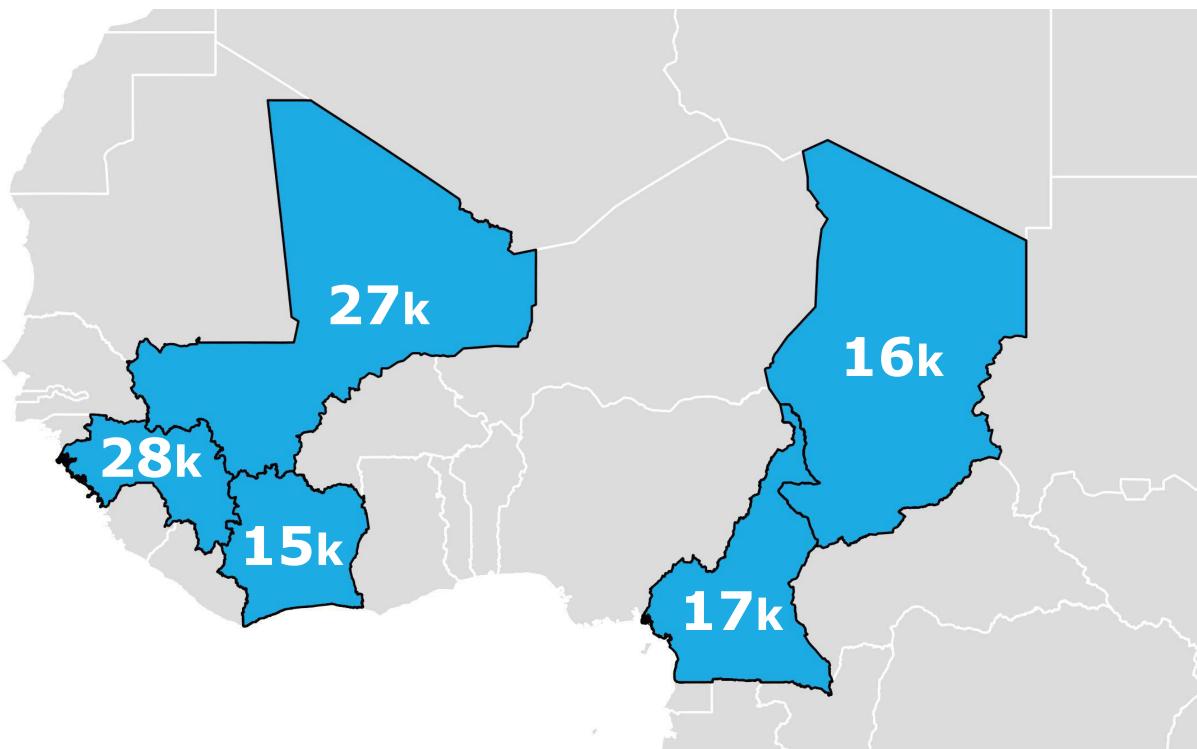
Estimated number of under-five children lives saved by achieving 95% *vaccination coverage by country*

What's at stake?

103,000 child deaths could be avoided every year in the 5 countries by achieving 95% coverage

6,**400** child deaths could be prevented for every 1% increase in vaccination coverage

slide credit Martin Bogaert & Tommaso Salvatori



Estimated number of under-five children lives saved by achieving 95% *vaccination coverage by country*

Take Aways

Vulnerability is multifaceted

The "It works!" trap - Accuracy vs Fairness

Data & Tools you employ are likely not originally thought to address the problem you tackle

Social Good problems are complex - often there is time pressure but make sure to thoroughly observe your models' outputs

Carefully consider the tradeoffs

All models are wrong but some are useful - George E. P. Box

Yelena Mejova, ISI Foundation **Daniele Sartirano**, ISI Foundation Enrico Belliardo, ISI Foundation Giordano Paolotti, ISI Foundation Federico Moss, ISI Foundation Lorenzo dell'Amico, ISI Foundation Daniela Paolotti, ISI Foundation Jacopo Lenti, ISI Foundation Mersedeh Kooshki ISI Foundation

Mariano Beiro, Universidad de San Andrés Marc van den Homberg, 510 Netherlands Red Cross 50 + Metherlands Leonardo Milano, OCHA

Martin Bogaert MIT Sloan Tommaso Salvatori MIT Sloan

Niccolo Cirone UNICEF Manuel Garcia Herranz UNICEF Enrique Delamónica UNICEF

ISI Foundation

Kyriaki Kalimeri

kyriaki.kalimeri@isi.it **With Control Weight Control Weight**

Interesting Reads

- https://developers.google.com/machine-learning/foundational-courses
- https://web.archive.org/web/20200322095332id /https:// id2886526.pdf

https://developers.google.com/machine-learning/glossary#bias-ethicsfairness

www.microsoft.com/en-us/research/wp-content/uploads/2017/03/SSRN-

https://medium.com/data-science/the-limitations-of-shap-703f34061d86