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The Internet
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The Internet (routing) is a… ?
A. mesh
B. mess
C. well modeled and analyzed system
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The Internet
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● The Internet is a network of networks or “Autonomous Systems (AS)”
● ~70k   ASes
● ~450k AS-AS links (“peering links”)
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The Internet
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my network

my red 
ingress point

my blue 
ingress point
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Internet routing
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Internet routing:
Border Gateway 
Protocol (BGP)
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Internet routing
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my network

red path 
to IPx

blue path 
to IPx

“ I have two 
paths to IPx.

I prefer the red 
path, because 
[some local 

policy] ”
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Internet routing
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my network

red path 
to IPx

blue path 
to IPx

“ I have two 
paths to IPx.

I prefer the red 
path, because 
[some local 

policy] ”

“best path”
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Internet routing
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my network

“ I have two 
paths to IPx.

I prefer the red 
path, because 
[some local 

policy] ”

“ I have two 
paths to IPx.

I prefer the blue 
path, because 
[some local 

policy] ”
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Internet routing measurements
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● BGP route collectors

● Pings

● Traceroutes

Characteristics

Information type Measurement type Vantage points

path passive 
(monitoring)

public monitors

reachability active public monitors & 
local (my network)

reachability & 
path

active public monitors & 
local (my network)
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BGP route collectors
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B

C

A

D

my network

route collector“My path is 
[D→C→B→A]”

Today: 
● ~300 ASes (out of all ~70k ASes) 

provide path information
● public & real time
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Ping measurements
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B

C

A

D

my network

ping to D 
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Traceroute measurements
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B

C

A

D

my network

traceroute to D 
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Use cases / problems
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1. Network management (“catchment” inference)

2. Network security (BGP prefix hijacking)
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Catchment
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my network

my red 
ingress point

my blue 
ingress point

Catchment of the 
red ingress point

Catchment of the 
blue ingress point

Definition
“catchment” of the ingress 
point X: is the set of ASes 
that select best paths 
through the ingress point X



Pavlos Sermpezis   |   sermpezis@csd.auth.gr |   Internet routing measurements: from theory to practice

Importance of catchment
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Knowing / inferring / predicting the catchment is important for:

● load balancing & traffic engineering
○ e.g., “how to announce my IP addresses through BGP so that each of the 

ingress points A and B receives 50% of the incoming traffic?”

● network planning & resource allocation
○ e.g., “where to deploy/connect a new ingress point so that it attracts the 

incoming traffic from US-based ASes?”

● resilience analysis
○ e.g., “how would a BGP hijack by AS_x or failure of a link Y affect my traffic?”

● etc.
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Problem: What is my “catchment”?
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A fundamental problem in Internet routing operations:
A network cannot fully control or even know exactly the catchment of its ingress points!

Why? Because the catchment depends on the...
● routing configuration (set of ingress points, BGP announcement fields, etc.)
● local routing policies of all ASes →  which are not accurately known
● topology & BGP dynamics →  which are highly complex

...or... ...or... ???
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Existing approaches
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What do network operators do today to estimate / infer / predict the catchment?

Measurements!
● existing methodologies: measure all (~70k) networks → naive, inefficient, non-scalable

measure

measure

measure

measure

measure

measure

measure

measure

Given the other 
measurements, 
are these two 
measurements 
really needed?
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Can we do better?
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● How? exploit information:
○ Topology: ASes and links → we (mostly) know it 
○ Routing policies → we have only partial/inaccurate information
○ Local policies (i.e., “my network” / ingress points) → we know it

more complete & 
accurate data 
→ more informative 
our inference

Pavlos Sermpezis and Vasileios Kotronis,. "Inferring Catchment in Internet Routing", 
ACM SIGMETRICS, 2019.

● Goals
○ infer catchment with less (or no) measurements 
○ propose efficient measurement methodologies
○ prediction even for non existing deployments
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Let’s start: all paths, eligible paths, best paths
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n2 n4

n1

dst

n3

my network

my red 
ingress point

my blue 
ingress point

q
12

=100

q
13

=100

q
14

=10

● all possible BGP paths of n1:   [dst→ … → n1]
● eligible paths of n1:    [dst→n2→n1] and [dst→n3→n1]

○ [dst→n4→n1] is not eligible, because q
12 

,q
13

>q
14

 (i.e., not preferred as best path)
● best path of n1 ?

○ best path == catchment inference



dst

n2

n3

n1

n4
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Inference, step 0: build the R-graph
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q
12

=100 q
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=10

q
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=100
n2

n1

n3
n4

dst

● The R-graph is a directed acyclic graph (DAG) that encodes all the eligible paths

R-graph
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Inference, step 0: build the R-graph
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q
12

=100 q
14

=10

q
13

=100
n2

n1

n3
n4

dst

● The R-graph is a directed acyclic graph (DAG) that encodes all the eligible paths

R-graph

Theorem 1
A path p

i→dst
 = [ dst → …→ i ] is an eligible path if and only if it can be constructed by starting 

from node dst and following a sequence of directed edges in the R-graph until reaching node i

Algorithm 1 (R-graph construction)
- Simulate BGP, arbitrarily break ties (this randomness does not affect the R-graph 

construction!)
- FOR each node, add incoming edges from all neighbors: (i) from which a path is learned, 

and (ii) have the highest local preference
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Certain inference
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● The R-graph … 
○ … encodes all the eligible paths
○ … enables catchment inference 

(i.e., infer through which ingress point each node i routes its traffic to node dst)

n2n1

n4

n6

n8

n5n3

n7

dst

Algorithm 2 (certain inference on the R-graph)
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Certain inference
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● The R-graph … 
○ … encodes all the eligible paths
○ … enables catchment inference 

(i.e., infer through which ingress point each node i routes its traffic to node dst)

n2n1

n4

n6

n8

n5n3

n7

dst

Algorithm 2 (certain inference on the R-graph)
● IF only one eligible path → inference

e.g,. nodes n1, n2, n3, n5
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Certain inference
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● The R-graph … 
○ … encodes all the eligible paths
○ … enables catchment inference 

(i.e., infer through which ingress point each node i routes its traffic to node dst)

n2n1

n4

n6

n8

n5n3

n7

dst

Algorithm 2 (certain inference on the R-graph)
● IF only one eligible path → inference

e.g,. nodes n1, n2, n3, n5
● IF multiple eligible paths 

○ IF all paths through the same ingress point → inference
e.g., node n7
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Certain inference
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● The R-graph … 
○ … encodes all the eligible paths
○ … enables catchment inference 

(i.e., infer through which ingress point each node i routes its traffic to node dst)

n2n1

n4

n6

n8

n5n3

n7

dst

Algorithm 2 (certain inference on the R-graph)
● IF only one eligible path → inference

e.g,. nodes n1, n2, n3, n5
● IF multiple eligible paths 

○ IF all paths through the same ingress point → inference
e.g., node n7

○ ELSE → no certain inference
e.g., nodes n4, n6, n8
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Certain inference

27

● The R-graph … 
○ … encodes all the eligible paths
○ … enables catchment inference 

(i.e., infer through which ingress point each node i routes its traffic to node dst)

n2n1

n4

n6

n8

n5n3

n7

dst
Figure 1

#nodes with certain inference (white) vs. 
#nodes with only 1 eligible path (black)

→ certain inference is possible for many nodes 
even when multiple paths are eligible
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Probabilistic inference
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● “route probability” π
i 
(m): probability the best path of node i to be through 

the ingress point m
○ e.g., π

n4 
(red) = ? , π

n4 
(blue) = ?

n2n1

n4

n6

n8

n5n3

n7

dst
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Probabilistic inference
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● “route probability” π
i 
(m): probability the best path of node i to be through 

the ingress point m
○ e.g., π

n4 
(red) = ? , π

n4 
(blue) = ?

n2n1

n4

n6

n8

n5n3

n7

dst

Algorithm 3 (probabilistic inference on the R-graph)
● FOR node i in topological_sort(R-graph)

○ calculate probability from parent nodes C
i
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Probabilistic inference
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● “route probability” π
i 
(m): probability the best path of node i to be through 

the ingress point m
○ e.g., π

n4 
(red) = ? , π

n4 
(blue) = ?

Algorithm 3 (probabilistic inference on the R-graph)
● FOR node i in topological_sort(R-graph)

○ calculate probability from parent nodes C
i

e.g., 
● node n4:  π

n4 
(red) = 1/2 , π

n4 
(blue) = 1/2

n2n1

n4

n6

n8

n5n3

n7

dst
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Probabilistic inference
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● “route probability” π
i 
(m): probability the best path of node i to be through 

the ingress point m
○ e.g., π

n4 
(red) = ? , π

n4 
(blue) = ?

Algorithm 3 (probabilistic inference on the R-graph)
● FOR node i in topological_sort(R-graph)

○ calculate probability from parent nodes C
i

e.g., 
● node n4:  π

n4 
(red) = 1/2 , π

n4 
(blue) = 1/2

● node n6:  π
n6 

(red) = 1/2 , π
n6 

(blue) = 1/2
● node n8:  π

n8 
(red) = 1/4 , π

n8 
(blue) = 3/4

n2n1

n4

n6

n8

n5n3

n7

dst



Pavlos Sermpezis   |   sermpezis@csd.auth.gr |   Internet routing measurements: from theory to practice

Inference under oracles
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● oracle = measurement (e.g., BGP route collector, traceroute, etc.)
● Goal: measure a set of nodes S → infer the catchment for S’ ⊇ S ?
● more efficient measurement strategies 

n2n1

n4

n6

n8

n5n3

n7

dst
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Inference under oracles
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● oracle = measurement (e.g., BGP route collector, traceroute, etc.)
● Goal: measure a set of nodes S → infer the catchment for S’ ⊇ S ?
● more efficient measurement strategies 

Algorithm 4 (enhance inference under oracles)
● for a set of nodes S, measure (“infer from oracle”) their routes

n2n1

n4

n6

n8

n5n3

n7

dst
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Inference under oracles
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● oracle = measurement (e.g., BGP route collector, traceroute, etc.)
● Goal: measure a set of nodes S → infer the catchment for S’ ⊇ S ?
● more efficient measurement strategies 

Algorithm 4 (enhance inference under oracles)
● for a set of nodes S, measure (“infer from oracle”) their routes
● Iteratively

○ infer the routes of the children-nodes of nodes in S
e.g., measure node n6

if n6=blue → n8=blue
if n6=red → no inference for n8

n2n1

n4

n6

n8

n5n3

n7

dst

measure
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Inference under oracles
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● oracle = measurement (e.g., BGP route collector, traceroute, etc.)
● Goal: measure a set of nodes S → infer the catchment for S’ ⊇ S ?
● more efficient measurement strategies 

Algorithm 4 (enhance inference under oracles)
● for a set of nodes S, measure (“infer from oracle”) their routes
● Iteratively

○ infer the routes of the children-nodes of nodes in S
e.g., measure node n6

if n6=blue → n8=blue
if n6=red → no inference for n8

○ infer the routes of the parent-nodes of nodes in S
e.g., measure node n8

if n8=red → no inference for n6=red
if n8=blue → no inference for n6 n2n1

n4

n6

n8

n5n3

n7

dst

measure
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Inference under oracles
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● oracle = measurement (e.g., BGP route collector, traceroute, etc.)
● Goal: measure a set of nodes S → infer the catchment for S’ ⊇ S ?
● more efficient measurement strategies 

Algorithm 4 (enhance inference under oracles)
● for a set of nodes S, measure (“infer from oracle”) their routes
● Iteratively

○ infer the routes of the children-nodes of nodes in S
e.g., measure node n6

if n6=blue → n8=blue
if n6=red → no inference for n8

○ infer the routes of the parent-nodes of nodes in S
e.g., measure node n8

if n8=red → no inference for n6=red
if n8=blue → no inference for n6 n2n1

n4

n6

n8

n5n3

n7

dst● Updating the certain inference after measurements → polynomial time O(N)
● Updating the probabilistic inference after measurements → NP-hard
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Efficient measurement strategies
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● Optimal measurement strategy → NP-hard problem
○ combinatorial; without “nice properties” (e.g., submodularity)
○ even updating probabilities under oracles is NP-hard 

(“belief updating” in non-polytree Bayesian Networks; reduction to SAT)

n2n1

n4

n6

n8

n5n3

n7

dst
Figure 3

R-graph based heuristic (black) vs.
random measurements (red)

● Heuristic (greedy) algorithm 
○ at each step select measurement that  increases most the certain inference
○ update probabilities only from forward belief propagation
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More results (in the paper)
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● rich information from inference 
○ upper/lower bounds, mean values, important links/nodes/policies

● completeness of inference

● efficiency of existing monitoring infrastructure 
○ RouteViews, RIPE, LGs, etc.

● real experiments
○ accuracy (vs. real-world measurements for IP anycasting)
○ traffic engineering (vs. real-world peering selection)
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Use cases / problems
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1. Network management (“catchment” inference)

2. Network security (BGP prefix hijacking)
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BGP Prefix hijacking
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my network

“I own the IP 
addresses 

139.91.0.0/16”

“I own the IP 
addresses 

139.91.0.0/16”

a malicious 
network

“I own the IP 
addresses 

139.91.0.0/16”
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BGP Prefix hijacking
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my network

“I own the IP 
addresses 

139.91.0.0/16”

“I own the IP 
addresses 

139.91.0.0/16”

a malicious 
network

“I own the IP 
addresses 

139.91.0.0/16”
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Importance of BGP prefix hijacking
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● service outages & traffic interception
○ can last for hours
○ affect millions of users
○ can cost 100s of thousands of $$$ (or more) per minute

● ~2500 (reported) prefix hijacking events in 2020 

● no actual (proactive) defence  
○ defences based upon detection & countermeasures
○ timely detection is very important 
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BGP prefix hijacking
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● Detection
○ our contribution → near real time detection (within a few seconds; ~5sec.)

● Impact estimation 
○ impact == catchment of the hijacker
○ our contribution → 1st formal study on hijack impact estimation

Pavlos Sermpezis, et al. "ARTEMIS: Neutralizing BGP Hijacking within a Minute", 
in ACM/IEEE Transactions on Networking (ToN), 2018.

Pavlos Sermpezis, et al. "Estimating the Impact of BGP Prefix Hijacking", 
in IFIP Networking conference, June 2021.

in collaboration with



Pavlos Sermpezis   |   sermpezis@csd.auth.gr |   Internet routing measurements: from theory to practice

Detection with ARTEMIS
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● “ARTEMIS”
○ real-time detection & automated mitigation system

Pavlos Sermpezis, et al. "ARTEMIS: Neutralizing BGP Hijacking within a Minute", in ACM/IEEE Transactions on Networking (ToN), 2018.
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Detection with ARTEMIS
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my network

a malicious 
network

route collector

route collector

route collector

ARTEMIS
“hijack alert !!! 

(at least) one monitor 
sees an illegitimate path”
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Detection with ARTEMIS
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● “ARTEMIS”
○ real-time detection & automated mitigation system
○ open-source software https://bgpartemis.org/ 
○ deployed in operational networks

■ Internet2, AMS-IX, ForthNet, etc.

Pavlos Sermpezis, et al. "ARTEMIS: Neutralizing BGP Hijacking within a Minute", in ACM/IEEE Transactions on Networking (ToN), 2018.

● Public monitoring infrastructure (BGP route collectors)
○ became real-time only recently (3-4 years)
○ rich information (will become richer with BMP protocol)
○ enables novel applications/methods (research & commercial)
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Impact estimation
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● Goal: estimate the impact of a (detected) hijacking event
○ detection (at least one network infected) vs. 

impact estimation (number of infected networks)
○ desired characteristics: fast & accurate methodology

Pavlos Sermpezis, et al. "Estimating the Impact of BGP Prefix Hijacking", in IFIP Networking conference, June 2021.

● How?
○ Heavyweight methodology: measure all networks [NOW]

■ e.g., ping all networks
○ Lightweight methodology: measure some networks (sampling)

■ e.g., estimate from BGP route collectors [NOW?]
■ e.g., ping some networks
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Impact estimation
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● Sampling in theory…

Pavlos Sermpezis, et al. "Estimating the Impact of BGP Prefix Hijacking", in IFIP Networking conference, June 2021.

● Sampling in practice…

○ with ping measurements
→ high measurement failures (> 90% non pingable IP addresses)
→ they end-up being less accurate than BGP route collectors (for p > 20%) 
→ we need p < 10%

theory

BGP route 
collectors

Theorem 2. RMSE vs. failure probability p.

○ The estimation error (RMSE) decreases 
with the number of samples (M)

○ with BGP route collectors



Pavlos Sermpezis   |   sermpezis@csd.auth.gr |   Internet routing measurements: from theory to practice

(Practical) ping-based estimator
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● Ping-based estimator:
○ Find “pingable” IP addresses for every AS [ANT Lab’s IP hitlist]
○ Ping multiple (N

IP
) IP addresses per AS

○ If at least one ping reply from an AS → the AS is not affected by the hijack

Pavlos Sermpezis, et al. "Estimating the Impact of BGP Prefix Hijacking", in IFIP Networking conference, June 2021.

N
IP

1 2 3 ... 10

p 12.8% 4.2% 2.1% ... 0%

RMSE (M=100) 7.9% 4.7% 4.1% ... 3.9%

Key findings
● N

IP
>=2 for low error

● no need for N
IP

>3
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(Improved) BGP route collectors estimator
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● BGP route collectors estimator 
○ high error, why? → due to location bias, i.e., correlated measurements
○ how to improve? → decouple them! … with ML(?)

Pavlos Sermpezis, et al. "Estimating the Impact of BGP Prefix Hijacking", in IFIP Networking conference, June 2021.

Result: a Linear (Ridge) Regressor able to train well (20 samples!) 
     and achieve low estimation error (even in experiments!) :)

● ML-based estimator:
○ many features (e.g., location information, routing policies, graph properties) 

& ML models (regression) worked fine in simulations!
○ … but, in practice?

■ no labelled real datasets :(
■ we did real experiments in the Internet → ~20 labeled samples :/
■ most ML models did not train well in the few real experiments  :(
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ML/AI for networking: challenges & research directions
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Data: networking has a lot of useful data, but...
● lack of labelled data 
● lack of benchmark datasets
● heterogeneous data (topology, routing paths, link state, text in mailing lists(!), etc.) 

Adoption: ML/AI techniques can be very efficient, but...
● network operators/admins are not data scientists
● lack of transparency (i.e., trust issues; critical tasks)

Methods: general ML/AI methods may need to be adapted for networking problems...
● robustness
● cost function (high cost of errors)
● dynamic data
● capture network structure → Graph Neural Networks (GNN)

→ AutoML

→ Explainable AI (XAI)

in collaboration with
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Summarizing...
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Measurements
● very important in Internet operations (due to complexity and limited modeling)
● today: many capabilities & opportunities (new technologies)
● current methodologies: large potential for improvement

Theory vs. practice
● Only-theory: does not work
● Only-practice: inefficient, suboptimal
● Mix theory & practice: develop theory → get insights → apply in practice 

Future research directions
● Data-science & ML/AI for networking (e.g., AutoML, Explainable AI, Graph ML)
● Key for feasibility and adoption: involve network operators in research


