# A Modeling Framework for Analyzing European Balancing Markets

#### Anthony Papavasiliou, Gilles Bertrand CORE, UCLouvain

#### Technical University of Crete, 2021

March 12, 2021

(日)

1/63

# Outline

- Primer on Electric Power Systems and Electricity Markets
- 2 Introduction
  - Trading of Energy and Reserve in EU Markets
  - Motivation of Our Work
  - Existing Modeling Frameworks
- A Model of the EU Balancing Market Based on MDPs
  - Building Up the MDP Model
  - Market Design Variants
- Analytical Results
  - Statement of Analytical Results
  - Proof Strategy
- Illustration on a Case Study
  - Validation of Analytical Results
  - Back-Propagation

# Outline

### Primer on Electric Power Systems and Electricity Markets

### Introduction

- Trading of Energy and Reserve in EU Markets
- Motivation of Our Work
- Existing Modeling Frameworks
- 3 A Model of the EU Balancing Market Based on MDPs
  - Building Up the MDP Model
  - Market Design Variants
- 4 Analytical Results
  - Statement of Analytical Results
  - Proof Strategy
- 5 Illustration on a Case Study
  - Validation of Analytical Results
  - Back-Propagation



### Sequential Activation of Reserves



### **Blueprint of an Electricity Market**



- Generator bids: price-quantity pairs (P, Q), representing price P at which suppliers are willing to produce quantity Q
- Consumer bids: price-quantity pairs (P, Q) representing price P consumers are willing to pay for quantity Q
- Obligations and payoffs
  - Market clearing price *P*\*: intersection of supply and demand curves
  - In the money supply bids: produce and receive P\* \$/MWh
  - In the money demand bids: consume and pay P\* \$/MWh



- Uniform price auctions aim to approximate second-price auctions (with their associated appealing incentive compatibility properties)
- Uniform price auctions are the standard mechanism for trading energy and services in electricity markets

| Balancing market                             | Αγορά εξισορρόπησης                                            |
|----------------------------------------------|----------------------------------------------------------------|
| Contingency                                  | Απρόβλεπτο συμβάν                                              |
| Frequency restoration reserves (FRR)         | Εφεδρείες αποκατάστασης συχνότητας (ΕΑΣ)                       |
| Balancing service provider (BSP)             | Πάροχος εφεδρείας                                              |
| Balancing responsible party (BRP)            | Φορέας με ευθύνη εξισορρόπησης                                 |
| Nominated electricity market operator (NEMO) | Διορισμένος διαχειριστής ηλεκτρικής ενέργειας                  |
| Transmission system operator (TSO)           | Διαχειριστής εθνικού συστήματος μεταφοράς ηλεκτρικής ενέργειας |
| Shortage / scarcity pricing                  | Μηχανισμός τιμολόγησης σε ανεπάρκεια                           |

Balancing capacity <-> day-ahead / forward reserve capacity

Balancing energy <-> real-time energy

aFRR, mFRR <-> operating reserves (resources with a response time of seconds to minutes)

# Outline

Primer on Electric Power Systems and Electricity Markets

### Introduction

- Trading of Energy and Reserve in EU Markets
- Motivation of Our Work
- Existing Modeling Frameworks
- 3 A Model of the EU Balancing Market Based on MDPs
  - Building Up the MDP Model
  - Market Design Variants
- 4 Analytical Results
  - Statement of Analytical Results
  - Proof Strategy
- 5 Illustration on a Case Study
  - Validation of Analytical Results
  - Back-Propagation

### Trading of Energy and Reserve in EU Markets

- Important EU-wide balancing market integration initiatives
- Functional separation:
  - TSOs: forward procurement of reserve capacity, deployment of reserve capacity in real time
  - NEMOs: operation of day-ahead and intraday market
- Balancing Responsible Parties (BRPs): price-inelastic buyers or sellers of real-time energy
- Balancing Service Providers (BSPs): price-elastic suppliers or consumers of real-time energy
  - BSPs commit to bidding at least DA reserve capacity to RT balancing markets
  - Each BSP must be attributed to at least one BRP portfolio, according to EU law (EBGL)
- BRPs and BSPs face a different price for real-time energy:
  - BRPs: imbalance price
  - BSPs: balancing price

### Role of ORDC in a Regime of Renewables

- Accurate valuation of energy and reserve capacity is an increasingly crucial function of RT markets in a regime of large-scale renewable energy integration
- Operating reserve demand curves (ORDCs) [Hogan, 2005]: means for achieving this goal
  - ORDC adders computed on basis of available reserve capacity in the system
  - When reserve capacity decreases, ORDC adders increase (value of reserve in tight system)
  - When reserve capacity increases, ORDC adders dissipate

### Scarcity Pricing Evolutions Internationally

- ORDC adders have been adopted in Texas
- Adoption of ORDCs is moving forward in PJM
- European Commission Electricity Balancing Guideline article 44(3)



Figure: ORDC adders in Texas, 2014-2015

### Scarcity Pricing Evolutions in Belgium

- Preliminary analyses [Papavasiliou, 2017], [Papavasiliou, 2018] focused on quantifying possible implications of mechanism for reserve resources
- Belgian system operator [ELIA, 2018] publishes scarcity adders based on the "available reserve capacity" (ARC) of the system
- Since October 2019, ELIA publishes scarcity prices for information purposes
  - Computed for every quarter of the day
  - Published one day after operations
- ELIA public consultation on scarcity pricing [ELIA, 2020]

# Translating First Principles to the EU Design

- ORDC essentially sets a RT price for reserve
- In equilibrium, energy and reserve prices follow each other in lock step



So what does it mean to introduce ORDC adders to the EU market, if we do not have a RT market for reserve?

- Adders to the imbalance price (BRPs)?
- Adders to the balancing price (also BSPs)?
- What about RT reserve capacity?

## Our Proposal for Implementing Scarcity Pricing

- **Proposal 1**: introduction of a scarcity adder to the imbalance price
- **Proposal 2**: application of same adder to the balancing energy price
- **Proposal 3**: implement a real-time market for reserve capacity (equivalently, market for reserve imbalances, in the same way that we operate a market for energy imbalances)

### Stochastic Equilibrium Models

- Rationale of our proposal:
  - Law of one price [Cramton, 2006] applied to real-time energy
  - Back-propagation of reserve value: If we put in place a real-time market for reserve capacity, agents will only sell reserve capacity in forward markets at the value that they would need to buy it back in real time
- Stochastic equilibrium [Papavasiliou, 2020]
  - Can be used to understand effect of certain market design choices on back-propagation ...
  - ... but it embeds the law of one price as an assumption

- Our approach in this work: represent balancing market as a Markov Decision Process (MDP)
- Growing body of work in this direction
  - Early work: analysis of design changes on English and Welsh markets [Bower, 2001], [Bunn, 2001]
  - Application of Q-learning [Naduri, 2007], [Yu, 2010]
  - Deep learning [Ye, 2019], [Ye, 2020]

- MDP framework: powerful modeling flexibility ...
- ... but difficult to extract generalizable conclusions
- We supplement our MDP-based market simulation framework with analytical results under perfect competition

# Outline

Primer on Electric Power Systems and Electricity Markets

### Introduction

- Trading of Energy and Reserve in EU Markets
- Motivation of Our Work
- Existing Modeling Frameworks

#### A Model of the EU Balancing Market Based on MDPs

- Building Up the MDP Model
- Market Design Variants
- 4 Analytical Results
  - Statement of Analytical Results
  - Proof Strategy
- 5 Illustration on a Case Study
  - Validation of Analytical Results
  - Back-Propagation

We consider a *general* agent participating in the balancing market as one which owns

- Uncontrollable assets
- Controllable assets (reserves)
  - marginal cost C
  - upward capacity P<sup>+</sup>
  - downward capacity P-

- Agent that decides how much balancing energy *q* to offer to a uniform price auction with constant price λ<sup>B</sup>
  - Action of the agent: quantity q:
  - Reward:  $(\lambda^B C) \cdot q$ , with qa the matched quantity
- Agent submitting price-quantity pairs
  - Action space: (p, q), i.e. offer of q MW at  $p \in /MWh$
  - If bids of competitors are fixed, this implies a balancing price
  - Reward of the agent:  $(\lambda^B C) \cdot qa$
- System-level uncertain imbalance ⇒ uncertainty in balancing price

### Differentiating BRP and BSP Settlement

Belgium applies a surcharge  $\alpha^U$  whenever the system is short, or a discount  $\alpha^L$  whenever the system is long:

$$\begin{array}{lll} \lambda^{I} &=& \lambda^{B} + \alpha \\ \alpha &\triangleq& \alpha^{U} \cdot \mathbb{I}[\textit{Imb}^{t} > \textit{UI}] - \alpha^{L} \cdot \mathbb{I}[\textit{Imb}^{t} < \textit{LI}] \end{array}$$

Notation:

- $\lambda'$ : imbalance price
- *Imb<sup>t</sup>*: total imbalance of the system
- *UI* and *LI*: upper and lower imbalance thresholds at which the surcharge or discount apply, respectively

Actual formula used in Belgium is more complex in practice (accounted for in simulations)



- Action: (*p*, *q*), price-quantity offer in balancing platform
- No reward is collected at this stage.

- State:
  - bid price p
  - Ieftover BSP capacity after some capacity has been offered to the balancing auction
  - imbalance Imb of an agent
- Action: How much of the imbalance Imb to cover ("active imbalance", must be limited to leftover capacity that BSP has not allocated to reserve auction)
- Reward:

  - **O** BSP payment for upward/downward activation,  $\lambda^{B} \cdot qa$
  - **2** BRP payment for imbalance settlement,  $-\lambda' \cdot (Imb ai)$
  - fuel costs related to self-balancing and BSP activation.

 $-C \cdot (ai + qa)$ 

# Three-Stage MDPs: Stage 1



Stage 1

- Action: (*p*<sup>*R*</sup>, *q*<sup>*R*</sup>), price-quantity offer in balancing capacity auction
- Rewards: payment from balancing capacity auction

- Stage 2
  - State: capacity *qa<sup>R</sup>* awarded in balancing capacity auction
  - Action: (*p*, *q*), the price-quantity offers in balancing platform, with *q* ≥ *qa<sup>R</sup>*
- Stage 3: identical to stage 2 of two-stage MDP

### **Considered Designs**

Option D1: vanilla balancing market design

$$\lambda^{B} \cdot qa - \lambda^{B} \cdot (Imb - ai) - C \cdot (qa + ai)$$

Option D2: imbalance price adders (current Belgian market)

$$\lambda' = \lambda^{B} + \alpha$$

 Option D3: Scarcity adders limited to imbalance prices [ELIA, 2020]

$$\lambda' = \lambda^{B} + \lambda^{R}$$

Option D4: Real-time market for balancing capacity

$$(\lambda^{B} + \lambda^{R}) \cdot qa - (\lambda^{B} + \lambda^{R}) \cdot (Imb - ai) - C \cdot (qa + ai) + \lambda^{R} \cdot (P^{+} - qa - ai) - \lambda^{R} \cdot qa^{R}$$

# Outline

Primer on Electric Power Systems and Electricity Markets

### 2 Introduction

- Trading of Energy and Reserve in EU Markets
- Motivation of Our Work
- Existing Modeling Frameworks
- 3 A Model of the EU Balancing Market Based on MDPs
  - Building Up the MDP Model
  - Market Design Variants

### Analytical Results

- Statement of Analytical Results
- Proof Strategy

#### 5 Illustration on a Case Study

- Validation of Analytical Results
- Back-Propagation

**Perfect competition assumption**: We consider fringe agents, i.e. ones with infinitesimal capacity who do not influence price outcomes

Rationale of assumption:

- Unveiling difficulties in back-propagating reserve prices in the case of perfect competition suggests *fundamental* market design problems
- Analytical results from perfect competition assumption allow better understanding / interpretation of MDP results

- It is optimal for agents to bid their entire balancing capacity at the true marginal cost to the balancing auction
- For agents with upward balancing capacity (P<sup>+</sup> > 0), the opportunity cost of bidding their capacity to the day-ahead reserve auction is zero
- This is a pure strategy Nash equilibrium

- Under the assumption of independent symmetric imbalances, it is optimal for agents to bid their entire balancing capacity at the true marginal cost to the balancing auction
- 2 For agents with upward balancing capacity ( $P^+ > 0$ ), the opportunity cost of bidding their capacity to the day-ahead reserve auction is zero
- This is a pure strategy Nash equilibrium

### Statement of Analytical Results: D3

- For sufficiently high-cost agents, is it optimal for agents for them to bid their entire balancing capacity at the true marginal cost to the balancing auction
- This does not characterize a pure strategy Nash equilibrium, since some agents find it optimal to self-balance

D3 depresses scarcity price in two ways:

- Agents who find it optimal to bid their entire capacity to the balancing auction face an opportunity cost of zero for bidding reserve in the day ahead
- Agents who self-balance depress balancing energy prices

### Statement of Analytical Results: D4

- It is optimal for agents to bid their entire balancing capacity at the true marginal cost to the balancing auction
- Por agents with upward balancing capacity (P<sup>+</sup> > 0), the opportunity cost of bidding their capacity to the day-ahead reserve auction is the scarcity value E[λ<sup>R</sup>]
- This is a pure strategy Nash equilibrium

Among the analyzed options, (D4) is the only option which

- back-propagates the real-time value of reserve capacity to day-ahead reserve auctions, while
- preserving the incentive of agents to make their balancing capacity available in the balancing market

# Proof for (D1)

- Without loss of generality, consider agent which only has downward capacity (i.e. P<sup>+</sup> = 0 and P<sup>-</sup> < 0) or only upward capacity (i.e. P<sup>-</sup> = 0 and P<sup>+</sup> > 0)
- Fringe assumption implication: no influence of imbalance on expected imbalance price ⇒ D ≜ −E[λ<sup>B</sup> · Imb] is a constant offset to the imbalance payoff of the agent
- Two possible suppliers:
  - Cheap:  $\mathbb{E}[\lambda^B] \geq C$
  - Expensive:  $\mathbb{E}[\lambda^B] < C$
- In what follows, we focus on cheap suppliers with upward capacity  $(\mathbb{E}[\lambda^B] C \ge 0, P^+ > 0, P^- = 0)$

Imbalance payoff:

$$egin{aligned} \max_{ai}(\mathbb{E}[\lambda^{\mathcal{B}}]-\mathcal{C})\cdot ai - \mathbb{E}[\lambda^{\mathcal{B}}\cdot \mathit{Imb}]\ ai + q \leq \mathcal{P}^+\ ai \geq 0 \end{aligned}$$

We have  $ai^* = P^+ - q$ , expected payoff  $z_l$  is:

$$z_I = (\mathbb{E}[\lambda^B] - C) \cdot (P^+ - q) + D$$

<ロ> <同> <同> < 回> < 回> < 回> < 回 > < 回 > の

37/63

### Proof for (D1): Balancing Market Payoff z<sub>B</sub>

Balancing payoff  $z_B(\omega)$ :

- Out of the money: if  $p > \lambda^B$ , then  $z_B(\omega) = 0$
- At the money: if p = λ<sup>B</sup>, then z<sub>B</sub>(ω) = (λ<sup>B</sup> − C) · qa for some qa which selected by the auctioneer; use fringe assumption to set qa = 0 and z<sub>B</sub> = 0
- In the money: if  $p < \lambda^B$ , then  $z_B(\omega) = (\lambda^B C) \cdot q$
- Balancing payoff  $z_B(\omega)$  is random, depends on system imbalance
- Denote probability measure of balancing price  $\lambda^B$  as  $\mu$
- Expected balancing market payoff:

$$z_B = \mathbb{E}[z_B(\omega)]$$
  
= 
$$\int_{x>p} (x-C) \cdot q \cdot d\mu(x)$$

### Proof for (D1): Optimal Balancing Market Price p

Overall agent payoff:

$$egin{array}{rcl} R(p,q) &=& z_{l}+z_{B} \ &=& C_{1}-C_{2}\cdot q+C_{3}(p)\cdot q \end{array}$$

where:

$$C_1 = (\mathbb{E}[\lambda^B] - C) \cdot P^+ + D$$
  

$$C_2 = \mathbb{E}[\lambda^B] - C$$
  

$$C_3(p) = \int_{x > p} (x - C) \cdot d\mu(x)$$

For given balancing quantity bid q, first-order conditions with respect to p are:

$$\frac{\partial R(p,q)}{\partial p} = C'_{3}(p) \cdot q$$
$$= -\mu(p) \cdot (p-C) \cdot q$$

### Proof for (D1): Optimal Balancing Market Price p

Payoff function R(p,q) for fixed q is

- increasing in  $(-\infty, C]$
- zero at C
- decreasing in [C, +∞)

Thus, for any q, an optimal strategy is to bid the true cost, which implies

$$R(C,q) = C_1 - C_2 \cdot q + C_3(C) \cdot q$$

### Proof for (D1): Optimal Balancing Market Quantity q

First-order conditions with respect to *q*:

$$\begin{aligned} \frac{\partial R(C,q)}{\partial q} &= -C_2 + C_3(C) \\ &= -(\mathbb{E}[\lambda^B] - C) + C_3(C) \\ &= -(\int_{x \le C} (x - C) \cdot d\mu(x) + \int_{x > C} (x - C) \cdot d\mu(x)) \\ &+ \int_{x > C} (x - C) \cdot d\mu(x) \\ &> 0 \end{aligned}$$

Therefore, it is optimal to bid  $q^* = P^+$  in the balancing auction, and  $ai^* = 0$ 

- When being in active imbalance, agent takes risk of producing power when being out of the money
- Instead, balancing market will only activate agent when its marginal cost is lower than the balancing price
- When the balancing and imbalance price are equal, the agent has the incentive to bid its entire capacity to the balancing auction

- Every MW cleared in a forward reserve auction comes with an obligation to bid that MW in the balancing auction
- This is profit lost in the balancing and imbalance phase
- Since the optimal strategy of the agent is to anyways bid its entire capacity in the balancing auction, there is no opportunity cost for the agent, i.e. dR\*/dq = 0

# Outline

Primer on Electric Power Systems and Electricity Markets

### 2 Introduction

- Trading of Energy and Reserve in EU Markets
- Motivation of Our Work
- Existing Modeling Frameworks
- 3 A Model of the EU Balancing Market Based on MDPs
  - Building Up the MDP Model
  - Market Design Variants
- 4 Analytical Results
  - Statement of Analytical Results
  - Proof Strategy

#### 5 Illustration on a Case Study

- Validation of Analytical Results
- Back-Propagation

#### • Fringe supplier

- Fringe supplier:  $P^+ = 1$  MW,  $P^- = 0$  MW
- Marginal cost:  $C = 50 \in MWh$
- Balancing auction bid q and reserve auction bid q<sup>R</sup> is either 0 MW or 1 MW
- Agent can bid any value *p* between 25 to 75 €/MWh, in increments of 5 €/MWh
- Imbalances:
  - System imbalance  $\sim N(0, 91.5)$
  - Fringe agent imbalance: ~ N(0, 0.41)
- Balancing supply function:
  - $a + b \cdot q$ , with  $a = 50 \in /MWh$ , and  $b = 0.11 (\in /MWh)/MW$
  - Approximation (for analytical solution purposes) of a balancing market with 8 agents (see next slide)

We validate our analytical results using the MDP model

- We assume a fringe agent
- We validate all designs
- See appendix for detailed assumptions of validation study

### **Multi-Agent Simulation Settings**

- Discretize agent action space by having agents bid in price increments of 5 €/MWh and in quantity increments of half of their capacity
- Each agent is facing a portfolio imbalance which is uniformly distributed between zero and half of its capacity
- System imbalance: zero mean and standard deviation of 21.9 MW
- Agent imbalances are independent of each other and system imbalance
- Day-ahead reserve demand curve identical to real-time reserve demand curve

- Q-learning algorithm using  $\epsilon$ -greedy policy, with  $\epsilon_k$  evolving as  $\frac{0.05}{N-k}$
- All agents are learning simultaneously ⇒ no convergence guarantees
- We run 1, 500, 000 iterations in blocks of 100
- After each block of 100 iterations, we compute the outcome that we would have obtained in the reserve market if each agent were applying its policy greedily



- For (*D*3), the reserve price sample average arrives slightly above the one resulting from (*D*1): certain low-cost producers may face a positive opportunity cost when bidding into the day-ahead reserve market
- Under design (D4), the day-ahead reserve price converges to a value which is close to the average real-time scarcity adder, i.e. 9.4 €/MWh

### **Conclusions and Perspectives**

Conclusions:

- MDP is an interesting framework for analyzing market design options, when supplemented by analytical results
- A market for balancing capacity imbalances can
  - back-propagate the value of reserve capacity to forward reserve markets
  - while also preserving incentive of agents to offer their capacity in the balancing market

Perspectives:

- Collaboration with CREG on calibration of ORDC to Belgian system needs
- Discussions with ELIA on scarcity pricing proposal [ELIA, 2020]
- Address questions of market stakeholders on public consultation of ELIA
- Further clarify interaction of market design proposal with
   EU legislation

### References (I)

- [Cramton, 2006]: P. C. Cramton, S. Stoft. "The convergence of market designs for adequate generating capacity with special attention to the CAISO's resource adequacy problem", 2006.
- [ELIA, 2018]: ELIA, "Study report on Scarcity Pricing in the context of the 2018 discretionary incentives", December 2018.
- [ELIA, 2020]: ELIA, "Preliminary report on Elia's findings regarding the design of a scarcity pricing mechanism for implementation in Belgium", September 2020.
- [Hogan, 2005]: W. W. Hogan, "On an 'Energy only' electricity market design for resource adequacy", 2005.
- [Papavasiliou, 2017]: A. Papavasiliou, Y. Smeers, "Remuneration of Flexibility under Conditions of Scarcity: A Case Study of Belgium", *The Energy Journal*, vol. 38, no.
   6, pp. 105-135, 2017

- [Papavasiliou, 2018]: A. Papavasiliou, Y. Smeers, G. Bertrand, "An Extended Analysis on the Remuneration of Capacity under Scarcity Conditions", *Economics of Energy and Environmental Policy*, vol. 7, no. 2, 2018
- [Papavasiliou, 2020]: A. Papavasiliou, Y. Smeers, G. de Maere d'Aertrycke, "Market Design Considerations for Scarcity Pricing: A Stochastic Equilibrium Framework", *The Energy Journal*, forthcoming

For more information:

- anthony.papavasiliou@uclouvain.be
- https://ap-rg.eu/
- https://perso.uclouvain.be/anthony.papavasiliou/public\_html/

- Default design: imbalance penalty  $\alpha$  of Eq. (1) is equal to zero
- Balancing price equals the imbalance price,  $\lambda' = \lambda^B$
- Compatible with EBGL
- Failure to generate a forward reserve price signal

### Imbalance Penalties (D2)

- Belgian government claims that the imbalance penalty  $\alpha$  "already exhibits quite some characteristics of a scarcity pricing mechanism"
- In case of independent imbalances and a symmetric imbalance penalty α, design (D2) is shown to behave identically to design (D1)
- Design (D2) relies on imbalance penalties α which depend on level of system imbalance, not to be confused with level of scarcity in the system
- In practice, imbalance alpha depends on imbalance of the current and previous interval ⇒ MDP model requires an additional state variable, imbalance of previous balancing interval (added to state vector of stages 2 and 3)

### Adders on Imbalance Charges (D3)

• ORDC adder:

$$\lambda^{R} = (VOLL - \lambda^{B}) \cdot LOLP(P^{+,tot} - Imb^{t}) \cdot \mathbb{I}[P^{+,tot} - Imb^{t} \ge 0] + (VOLL - C^{max}) \cdot \mathbb{I}[P^{+,tot} - Imb^{t} < 0])$$
(1)

- VOLL: estimate of value of lost load
- *P*<sup>+,tot</sup>: total reserve capacity
- LOLP(·): loss of load probability as a function of available reserve capacity
- C<sup>max</sup>: estimate of marginal cost of marginal unit
- ELIA proposal: apply  $\lambda^R$  as an imbalance charge
- This produces a forward reserve price that is significantly weaker than the average value of balancing capacity to the system

### Scarcity Pricing (D4)

- Replace  $\alpha$  with  $\lambda^R$  in Eq. (1)
- Introduce the following term in settlement:

$$-\lambda^{R} \cdot qa^{R} + \lambda^{R} \cdot (P^{+} - qa - ai)$$

- Second term induces agents to bid reserve capacity in forward markets in a way that anticipates expected price at which they would be required to buy that reserve capacity back in real time ⇒ back-propagation
- D4 implements an imbalance mechanism for balancing capacity / RT market for reserve capacity (analogous to imbalance mechanism for balancing energy / RT energy market)
- Compatible with article 20 of Clean Energy Package
- We need to add awarded day-ahead reserve capacity qa<sup>R</sup> to state of third time step of MDP model (since it affects third-stage payoff)

#### Fringe agent that we are interested in is agent A5

|                       | A1   | A2   | A3   | A4  | A5 | A6  | A7  | A8  |
|-----------------------|------|------|------|-----|----|-----|-----|-----|
| <b>P</b> <sup>+</sup> | 0    | 0    | 0    | 0   | 1  | 100 | 100 | 100 |
| <i>P</i> <sup>-</sup> | -100 | -100 | -100 | -50 | 0  | 0   | 0   | 0   |
| С                     | 20   | 30   | 40   | 50  | 50 | 60  | 70  | 80  |

Table: Units are in [MW] for  $P^+$  and  $P^-$ , and in [ $\in$ /MWh] for *C*.

 For design (D2), we use ELIA formula: UI = LI = 150 MW, and

$$\alpha^U = \alpha^L = \frac{200}{1 + \exp\left(\frac{450 - x}{65}\right)}$$

where  $x = \frac{|Imb^t| + |Imb_{t-1}^t|}{2}$  is the average of the absolute total system imbalances of the previous and current imbalance interval

- For design (D3) and (D4), we assume  $VOLL = 920 \in MWh$
- Q-learning algorithm
  - Learning rate:  $\frac{1}{n(s,a)}$  for each state-action pair (s, a), where n(s, a) counts the number of visits to (s, a)
  - We run 2,000,000 episodes for each design with the same seeds, in order to isolate the effect of the market design changes on the results

| Design                                      | ( <i>D</i> 1) | (D2) | (D3)  | (D4)  |
|---------------------------------------------|---------------|------|-------|-------|
| <i>q</i> * [MW]                             | 1             | 1    | 0     | 1     |
| <i>p</i> * [€/MWh]                          | 50            | 50   | any   | 50    |
| Average Profit [€]                          | 4.04          | 4.04 | 12.57 | 16.63 |
| Opportunity cost <i>dR</i> */ <i>dq</i> [€] | 0             | 0    | 8.53  | 12.59 |

Table: Analytical Solution

| Design                                          | ( <i>D</i> 1) | (D3)  | (D4)  |
|-------------------------------------------------|---------------|-------|-------|
| <i>q</i> * [MW]                                 | 1             | 0     | 1     |
| <i>p</i> * [€/MWh]                              | 55            | any   | 50    |
| Average Profit [€]                              | 6.34          | 14.43 | 18.85 |
| Opportunity cost <i>dR</i> */ <i>dq</i> [€/MWh] | 0             | 8.11  | 12.71 |

Table: MDP results for (D1), (D3) and (D4)

| Imb <sub>t-1</sub> [MWh]       | (∞, −150] | (-150,0] | (0,150] | $(150,\infty)$ |
|--------------------------------|-----------|----------|---------|----------------|
| <i>q</i> * [MW]                | 1         | 1        | 1       | 1              |
| <i>p</i> * [€/MWh]             | 50        | 55       | 55      | 50             |
| Average Profit [€]             | 6.43      | 6.30     | 6.32    | 6.46           |
| <i>dR</i> */ <i>dq</i> [€/MWh] | 0         | 0        | 0       | 0              |

Table: MDP results for (D2)

- For every design, the bid quantity and price are equivalent for the analytical case and the MDP model
- Profits are in the same range for the analytical solution and the MDP model
- Opportunity costs are very close to each other for the analytical model and the MDP code
- For design (*D*2), the range of values in the imbalance of the previous period,  $Imb_{t-1}^t$ , does not influence the selected action or the profit, in line with analytical results