Improving Distortion via Queries

Georgios Birmpas
Sapienza University of Rome

TUC, February 2021
Part I

Improving Distortion via Queries
Suppose that a set of people will vote for the winner in a hypothetical battle.
How we decide?

- Suppose that a set of people will vote for the winner in a hypothetical battle.
- The contenders are:
Suppose that a set of people will vote for the winner in a hypothetical battle.

The contenders are:
How we decide?

- Suppose that a set of people will vote for the winner in a hypothetical battle
- The contenders are:
Member 1: Close but I was always afraid of bats, so I will go for Batman.
Member 1: Close but I was always afraid of bats, so I will go for Batman

Member 2: I have not read the comics but I saw BvS and Batman won the fight, although it was close. So, I suppose Batman wins
Intensity of preferences

- Member 1: Close but I was always afraid of bats, so I will go for Batman
- Member 2: I have not read the comics but I saw BvS and Batman won the fight, although it was close. So, I suppose Batman wins ...
- Member n/2+1: It is close if you consider that Superman is weak to kryptonite. I will vote for Batman
Intensity of preferences

- Member 1: Close but I was always afraid of bats, so I will go for Batman
- Member 2: I have not read the comics but I saw BvS and Batman won the fight, although it was close. So, I suppose Batman wins
 ...
- Member $n/2+1$: It is close if you consider that Superman is weak to kryptonite. I will vote for Batman
- Member $n/2+2$: Come on people are you serious? Superman wins!!
Intensity of preferences

- **Member 1**: Close but I was always afraid of bats, so I will go for Batman
- **Member 2**: I have not read the comics but I saw BvS and Batman won the fight, although it was close. So, I suppose Batman wins...
- **Member \(n/2+1\)**: It is close if you consider that Superman is weak to kryptonite. I will vote for Batman
- **Member \(n/2+2\)**: Come on people are you serious? Superman wins!!...
- **Member \(n\)**: This is not even a contest... Superman would destroy him
Intensity of preferences

- Batman is the **winner** according to the **majority**
Intensity of preferences

- Batman is the winner according to the majority
- However, the outcome may have been different if we had information about the intensity of the preferences
A set of n agents N and a set of m alternatives A

Each agent $i \in N$ has a value v_{ix} for every alternative $x \in A$ (cardinal preferences)

Captures how intense a preference is
The setting

- The agents **submit** a **preference ranking** over the alternatives that is consistent to their values (**ordinal preferences**)

- An **ordinal** mechanism takes these rankings as an **input**
 - **Outputs** a **single** alternative as the winner
Utilitarian Social Choice

- **Objective**: Maximize the social welfare, i.e., select the alternative x that maximizes

$$\sum_{i \in N} v_{ix}$$
Utilitarian Social Choice

- **Objective:** Maximize the social welfare, i.e., select the alternative x that maximizes

$$\sum_{i \in N} v_{ix}$$

- Expresses how the society feels about the produced outcome
Utilitarian Social Choice

- **Objective:** Maximize the social welfare, i.e., select the alternative x that maximizes

$$\sum_{i \in N} v_{ix}$$

- This is easy to achieve when the **cardinal preferences** are known
Objective: Maximize the social welfare, i.e., select the alternative x that maximizes

$$\sum_{i \in N} v_{ix}$$

It may not be possible when only the ordinal preferences are known, due to the lack of information
Distortion

- The distortion of an *ordinal* mechanism M is the maximum ratio (over all possible inputs) of the maximum possible social welfare, over the social welfare achieved by the mechanism.
- Defined by Procaccia and Rosenschein [2006]
Distortion

- The distortion of an ordinal mechanism M is the maximum ratio (over all possible inputs) of the maximum possible social welfare, over the social welfare achieved by the mechanism.
 - Defined by Procaccia and Rosenschein [2006]

- Expresses the guarantees of the mechanism in the worst-case scenario.
Remark 1: A mechanism that has access to the **cardinal information** can obviously achieve a distortion of 1
Distortion

- **Remark 1**: A mechanism that has access to the **cardinal information** can obviously achieve a distortion of 1.

- **Remark 2**: A mechanism that has access only to the **ordinal information** may elect an alternative that is different from the optimal.

 - The distortion captures how good-bad is this alternative in comparison with the optimal one.
Remark 1: A mechanism that has access to the cardinal information can obviously achieve a distortion of 1

Remark 2: A mechanism that has access only to the ordinal information may elect an alternative that is different from the optimal

- The distortion captures how good-bad is this alternative in comparison with the optimal one

Remark 3: The distortion is usually expressed as a function of m (the number of alternatives)
What we know?

- Ordinal Deterministic Mechanisms
- Ordinal Randomized Mechanisms
What we know?

- **Ordinal Deterministic** Mechanisms
- **Ordinal Randomized** Mechanisms
 - There is **randomness** on how the mechanism elects the winner
 - The **guarantees** of the mechanism are in **expectation**
What we know?

- Ordinal **Deterministic** Mechanisms
- Ordinal **Randomized** Mechanisms
 - **Unit-Sum Assumption**: The values of an agent over the alternatives sum up to 1
What we know?

- Ordinal **Deterministic** Mechanisms
- Ordinal **Randomized** Mechanisms
 - **Unit-Sum Assumption**: The values of an agent over the alternatives sum up to 1
 - An agent assigns to each alternative a percentage that expresses how much he likes him
 - Without any **normalization** assumption the distortion can be arbitrarily bad
What we know?

- Ordinal **Deterministic** Mechanisms
 - The distortion of *Plurality* for unit-sum valuations is $O(m^2)$ [Caragiannis and Procaccia 2011]
 - The distortion of *any* deterministic ordinal mechanism for unit-sum valuations is $\Omega(m^2)$ [Caragiannis et al. 2017]
What we know?

- Ordinal Randomized Mechanisms
 - There is an ordinal randomized mechanism with $O(\sqrt{m} \cdot \log^* m)$ distortion for unit-sum valuations [Boutilier et al. 2015]
 - The distortion of any randomized ordinal mechanism for unit-sum valuations is $\Omega(\sqrt{m})$ [Boutilier et al. 2015]
What we know?

- Most of the work on distortion regards **ordinal** mechanisms

Ordinal Preferences

- Deterministic: $O(m^2)$
- Randomized: $O(\sqrt{m} \cdot \log^* m)$

Cardinal Values

- Distortion = 1
Question

- How can we improve the distortion?

Ordinal Preferences

Deterministic: $O(m^2)$
Randomized: $O(\sqrt{m} \cdot \log^* m)$

Cardinal Values

Distortion=1
Part II

Improving Distortion via Queries
An idea

- What if we could *elicit* some *cardinal* information via simple *queries*?
An idea

- What if we could *elicit* some *cardinal* information via simple *queries*?
 - What is your *value* for alternative x?
An idea

- What if we could **elicit** some **cardinal** information via simple **queries**?
 - What is your **value** for alternative *x*?
 - Do you **prefer** alternative *x* by at least twice as much as alternative *y*?
Queries

- **Value Query**: Present agent i with an alternative x, and ask the agent for his value v_{ix}.
- **Value Query**: Present agent i with an alternative x, and ask the agent for his value v_{ix}

- **Comparison Query**: Present agent i with two alternatives x and y, and a number d, and ask the agent whether $v_{ix} \geq d \cdot v_{iy}$
 Queries

- **Value Query**: Present agent i with an alternative x, and ask the agent for his value v_{ix}

- **Comparison Query**: Present agent i with two alternatives x and y, and a number d, and ask the agent whether $v_{ix} \geq d \cdot v_{iy}$
 - A weaker form of query
 - Easier for an agent to answer
Mechanism $\mathcal{M} = (Q, R)$

- Algorithm Q

- Modified voting rule R
Mechanisms

Mechanism \(\mathcal{M} = (Q, R) \)

- **Algorithm \(Q \)**
 - Input: the ordinal profile \(\succ \)
 - Makes a set of (value or comparison) queries per agent
 - Output: the answers to the queries

- **Modified voting rule \(R \)**
Mechanisms

Mechanism \(M = (Q, R) \)

- **Algorithm** \(Q \)
 - Input: the ordinal profile \(\succ \)
 - Makes a set of (value or comparison) queries per agent
 - Output: the answers to the queries

- **Modified voting rule** \(R \)
 - Input: the ordinal profile \(\succ \), and the answers to the queries \(Q(\succ) \)
 - Output: a single alternative
Improving distortion via queries

Ordinal Preferences

Deterministic: $O(m^2)$
Randomized: $O(\sqrt{m} \cdot \log^* m)$

Cardinal Values

Distortion=1

What lies in between?

I can’t believe that I lost to this guy
Improving distortion via queries

Let’s try this again

Ordinal Preferences

Number of queries per agent

Cardinal Values

Deterministic: $O(m^2)$
Randomized: $O(\sqrt{m} \cdot \log^* m)$

Distortion=1
Part III

Improving Distortion via Queries

Highlights of our Results

Amanatidis, B., Filos-Ratsikas, Voudouris [2020]
Before we begin

- Every result holds **without** making any **normalization assumption** about the values of the agents
 - Unless stated otherwise
Before we begin

- Every result holds **without** making any *normalization assumption* about the values of the agents
 - Unless stated otherwise
- The focus will be on: Deterministic mechanisms
Before we begin

- Every result holds **without** making any **normalization assumption** about the values of the agents
 - Unless stated otherwise
- The focus will be on: Deterministic mechanisms
 - $O(\sqrt{m})$ distortion
 - $O(1)$ distortion
Before we begin

- Every result holds **without** making any **normalization assumption** about the values of the agents
 - Unless stated otherwise
- The focus will be on: Deterministic mechanisms
 - $O(\sqrt{m})$ distortion: Bound of the **randomized ordinal mechanisms**
 - $O(1)$ distortion: Provides a very **good** approximation of the **optimal** outcome
Before we begin

- Every result holds **without** making any **normalization assumption** about the values of the agents
 - Unless stated otherwise
- The focus will be on: Deterministic mechanisms
 - $O(\sqrt{m})$ distortion: Bound of the **randomized ordinal mechanisms**
 - $O(1)$ distortion: Provides a very **good** approximation of the **optimal** outcome
- **Goal**: Reach these bounds with as **few** queries (per agent) as possible
If we have λ available queries per agent, what is the best way to spend them?
If we have λ available queries per agent, what is the best way to spend them?

A first idea: There is a lot of value hidden under the λ-best alternatives of each agent

- Since we have the ordering, we know who they are
- Maybe we should focus there
A Warm-Up

- Mechanism: λ-Prefix Range Voting (λ-PRV)
A Warm-Up

- λ-PRV
 - Ask every agent for the value that he has at the best λ positions
λ-PRV
- Ask every agent for the value that he has at the best λ positions
- Set the rest of the values to 0
A Warm-Up

- λ-PRV
 - Ask every agent for the value that he has at the best λ positions
 - Set the rest of the values to 0
 - Choose the alternative that maximizes the social welfare, according to these values
Performance?

- λ-PRV
 - By asking λ queries per agent achieves an m/λ distortion
Performance?

- \(\lambda \)-PRV
 - By asking \(\lambda \) queries per agent achieves an \(m/\lambda \) distortion

- Achieves distortion \(O(\sqrt{m}) \) using \(\Theta(\sqrt{m}) \) queries per agent

- Achieves distortion \(O(1) \) using \(\Theta(m) \) queries per agent
Can we do better?

- Is it possible to achieve these distortion bounds by asking each agent fewer queries?
Can we do better?

- Is it possible to achieve these distortion bounds by asking each agent fewer queries?
 - Yes!
Is it possible to achieve these distortion bounds by asking each agent fewer queries?

- Yes!

We will try to use the fact that the ordinal preferences are known in a more clever way.
Can we do better?

- Is it possible to achieve these *distortion* bounds by asking each agent *fewer* queries?
 - Yes!

- We will try to use the fact that the *ordinal* preferences are *known* in a more clever way
 - What about *Binary Search*?
Consider a set of m items the value of which is hidden
Consider a set of m items the value of which is hidden.

Suppose however that the items are sorted in an increasing manner, and their ordering is given.
Binary Search

- Consider a set of m items the value of which is hidden.
- Suppose however that the items are sorted in an increasing manner, and their ordering is given.
- **Input**: A number and the ordering of the items.
Binary Search

- Consider a set of m items the value of which is hidden
- Suppose however that the items are sorted in an increasing manner, and their ordering is given
- **Input**: A number and the ordering of the items
- **Output**: The item with the closest value to the given number
Binary Search

- Consider a set of m items the value of which is hidden
- Suppose however that the items are sorted in an increasing manner, and their ordering is given
- **Input**: A number and the ordering of the items
- **Output**: The item with the closest value to the given number
- **Allowed actions**: Ask what is the hidden value of an item
The Naive Way

- Number: 41
The Naive Way

- Number: 41

1 < □ < □ < □ < □ < □ < □ < □
The Naive Way

- Number: 41

1 < 8 < box < box < box < box < box < box < box
The Naive Way

- Number: 41

1 < 8 < 19 < □ < □ < □ < □ < □
The Naive Way

- Number: 41

1 < 8 < 19 < 37 < □ < □ < □ < □
Number: 41

1 < 8 < 19 < 37 < 43 < [3 boxes]

The Naive Way
The Naive Way

- Number: 41

1 < 8 < 19 < 37 < 43 < □ < □ < □

- We found the desired item (no need to check the rest)
 - However, in the worst-case scenario we will make \(m \) queries
Binary Search

- Number: 41

Can we solve the problem with fewer queries?
Binary Search

- Number: 41

- Yes! Use the ordering in a more clever way!
Binary Search

- Number: 41
Binary Search

- Number: 41

< < < 37 < < < <
Binary Search

- Number: 41

- The numbers on the left are smaller than 37, so there is no need to check them.
Binary Search

- Number: 41

- Do the same recursively
Binary Search

- Number: 41

- Do the same recursively
- **Number:** 41

- The numbers on the right are larger than 70, so there is no need to check them.
- Number: 41

```
37 < [ ] < 70
```

- Do the same recursively
Binary Search

- Number: 41

37 < 43 < 70

- This procedure makes at most $\log m$ queries!
Can we do better?

- Is it possible to achieve these distortion bounds by asking each agent fewer queries?
 - Yes!
 - k-Acceptance Range Voting (k-ARV): A mechanism that runs the Binary Search as a sub-routine
Define k threshold values $\lambda_1, \ldots, \lambda_k$.

k-Acceptable Range Voting
Define k threshold values $\lambda_1, \ldots, \lambda_k$
Define k threshold values $\lambda_1, \ldots, \lambda_k$

Presented in a continuous way for convenience
k-Acceptable Range Voting

- Define k threshold values $\lambda_1, ..., \lambda_k$
Define k threshold values $\lambda_1, \ldots, \lambda_k$

We know the ordering, we can use binary search!!
Define k threshold values $\lambda_1, \ldots, \lambda_k$

\[
v_i^* \geq \frac{v_i^*}{\lambda_1} > \frac{v_i^*}{\lambda_2} > \ldots > \frac{v_i^*}{\lambda_{k-1}} > v_{ix} \geq \frac{v_i^*}{\lambda_k}
\]
Define k threshold values $\lambda_1, \ldots, \lambda_k$.

Simulated valuation function
\textit{k}-Acceptable Range Voting

- Set $\lambda_\ell = m^{\ell/(k+1)}$ for $\ell \in [k]$
- Compute the \textit{simulated} valuation function for every agent
- Return the alternative with maximum \textit{simulated} social welfare
Set $\lambda_\ell = m^\ell/(k+1)$ for $\ell \in [k]$

- Compute the simulated valuation function for every agent
- Return the alternative with maximum simulated social welfare

Theorem

k-ARV makes $O(k \cdot \log m)$ values queries per agent, and has distortion $O((k+1)^{1/2}m)$, even for unrestricted values.
k-Acceptable Range Voting

- Set $\lambda_\ell = m^{\ell/(k+1)}$ for $\ell \in [k]$
- Compute the simulated valuation function for every agent
- Return the alternative with maximum simulated social welfare

Theorem

k-ARV makes $O(k \cdot \log m)$ values queries per agent, and has distortion $O\left(\frac{k+1}{\sqrt{m}}\right)$, even for unrestricted values.

- 1-ARV has distortion $O(\sqrt{m})$ using $O(\log m)$ queries per agent
- $\log m$-ARV has distortion $O(1)$ using $O(\log^2 m)$ queries per agent
Remark 1

- $O(\sqrt{m})$ distortion
 - $\Theta(\sqrt{m})$ queries $\rightarrow O(\log m)$ queries

- $O(1)$ distortion
 - $\Theta(m)$ queries $\rightarrow O(\log^2 m)$ queries
Remark 2

- $\log m$-ARV has distortion $O(1)$ using $O(\log^2 m)$ queries per agent

- Can be also achieved by using comparison queries under the unit-sum assumption
 - The assumption is needed in order to approximate via comparison queries the value of the alternative at the first position
Remark 3

- \(O(\sqrt{m}) \) distortion
 - \(O(\log m) \) queries
 - **Lower bound**: Constant number of queries per agent

- \(O(1) \) distortion
 - \(O(\log^2 m) \) queries
 - **Lower bound**: \(\log m \) queries per agent
Part IV

Improving Distortion via Queries

Going Beyond the Utilitarian Social Choice Setting

Amanatidis, B., Filos-Ratsikas, Voudouris [2021]
Consider any problem where there is a set of agents that has cardinal preferences over a set of elements.
Consider any problem where there is a set of agents that has cardinal preferences over a set of elements.

Assume that the designer has access only to the ordinal information of the agents.
Consider any problem where there is a set of agents that has cardinal preferences over a set of elements. Assume that the designer has access only to the ordinal information of the agents. The designer has also the power to ask a number of queries to each agent, in order to gain more information.
Consider any problem where there is a set of agents that has cardinal preferences over a set of elements.

Assume that the designer has access only to the ordinal information of the agents.

The designer has also the power to ask a number of queries to each agent, in order to gain more information.

General question: What are the trade-offs between efficiency and information?
A modified version of k-ARV can be applied to a general framework of problems that can be described as follows:

- **Maximize** an additive objective over a family of **combinatorial structures** defined on a **weighted graph**.
This framework captures several well-known problems. We provide results for:
This framework captures several well-known problems. We provide results for:

- General Graph Matching
- Two-sided Perfect Matching
- General Resource Allocation
- Clearing Kidney Exchanges
- Others
Part V

Improving Distortion via Queries

Conclusion
We introduced the idea of improving distortion by using queries.
Summary

- We introduced the idea of improving distortion by using queries.
- We proposed a technique that provides good guarantees for the social choice setting, but is also applicable for a general framework of graph-theoretic problems.
Summary

- We introduced the idea of **improving distortion** by using **queries**
- We proposed a technique that provides good guarantees for the **social choice** setting, but is also applicable for a **general framework of graph-theoretic problems**
- We provided **lower** bounds, giving thus a **complete picture** on what is achievable with respect to the available number of queries
Future Directions

- This work regards only deterministic mechanisms
 - Consider randomized mechanisms and see if it is possible to achieve significant improvements
Future Directions

- Although k-ARV provides good guarantees, there is still room for improvement as the lower bounds indicate.
 - Can we design mechanisms that achieve the desired distortion bounds by using even less queries?
A modified version of k-ARV can be applied to a general class of graph-theoretic problems. Can we design tailor-made mechanisms for these problems that provide improved trade-offs between information and efficiency?
Thank You!!!!