Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives

Georgios Amanatidis

University of Essex

Pieter Kleer

Max-Planck-Institut für Informatik

Guido Schäfer

Centrum Wiskunde & Informatica

Buyer with budget B and valuation function v

value v_3

 $\cot c_3$

- Set of items $A = \{1, 2, ..., n\}$.
- Each item i comes with a cost c_i .
- Buyer with a budget B and a valuation function $v: 2^A \to \mathbb{R}$.

- Set of items $A = \{1, 2, ..., n\}$.
- Each item i comes with a cost c_i .
- Buyer with a budget B and a valuation function $v: 2^A \to \mathbb{R}$.

- Set of items $A = \{1, 2, ..., n\}$.
- Each item i comes with a cost c_i .
- Buyer with a budget B and a valuation function $v: 2^A \to \mathbb{R}$.
- When *v* is additive:
 - Objective: Select a set *S* that maximizes $v(S) = \sum_{i \in S} v_i$ subject to the constraint $\sum_{i \in S} c_i \leq B$.
 - This is just Knapsack!

• Knapsack is an NP-hard problem.

Reminder:

ALG is a ρ -approximation algorithm if $\rho \cdot v(ALG(I)) \ge v(OPT(I))$ for all I.

- However, we can approximate the optimal solution within $1 + \epsilon$ in polynomial time.
- Straightforward 2-approximation algorithm:
 - Sort all items from higher to lower density (value / cost);
 - Greedily build a feasible solution *S* w.r.t. this ordering;
 - Return the best among *S* and the item of highest value.

- Set of items $A = \{1, 2, ..., n\}$.
- Each item i comes with a cost c_i .
- Buyer with a budget B and a valuation function $v: 2^A \to \mathbb{R}$.
- Typically, *v* is submodular:

•
$$v(S \cup \{i\}) - v(S) \ge v(T \cup \{i\}) - v(T)$$

for any $S \subseteq T$ and $i \notin T$

i's marginal contribution decreases as the set grows

- Set of items $A = \{1, 2, ..., n\}$.
- Each item i comes with a cost c_i .
- Buyer with a budget B and a valuation function $v: 2^A \to \mathbb{R}$.
- Typically, *v* is submodular:
 - $v(S \cup \{i\}) v(S) \ge v(T \cup \{i\}) v(T)$ for any $S \subseteq T$ and $i \notin T$

i's *marginal* contribution decreases as the set grows

• Select a set S that maximizes v(S) subject to $\sum_{i \in S} c_i \leq B$.

- Set of items $A = \{1, 2, ..., n\}$.
- Each item i comes with a cost c_i .
- Buyer with a budget B and a valuation function $v: 2^A \to \mathbb{R}$.
- Typically, *v* is submodular:
 - $v(S \cup \{i\}) v(S) \ge v(T \cup \{i\}) v(T)$ for any $S \subseteq T$ and $i \notin T$

i's *marginal* contribution decreases as the set grows

- Select a set S that maximizes v(S) subject to $\sum_{i \in S} c_i \leq B$.
- Known *e*-approximation algorithm

- This is still an NP-hard problem.
- Approximating the optimal solution within $\frac{e}{e-1}$ in polynomial time is the best one could hope for.
- Straightforward 3-approximation algorithm for monotone submodular objectives:
 - Sort all items from higher to lower *marginal* density;
 - Greedily build a feasible solution S w.r.t. this ordering;
 - Return the best among *S* and the item of highest value.

- Set of agents $A = \{1, 2, ..., n\}$.
- Each agent *i* comes with a *private* cost c_i .
- Buyer with a budget B and a valuation function $v: 2^A \to \mathbb{R}$.

- Set of agents $A = \{1, 2, ..., n\}$.
- Each agent i comes with a *private* cost c_i .
- Buyer with a budget *B* and a valuation function $v: 2^A \rightarrow \mathbb{R}$. Here v is general submodular.

- Set of agents $A = \{1, 2, ..., n\}$.
- Each agent *i* comes with a *private* cost *c*_{*i*}.
- Buyer with a budget *B* and a valuation function $v: 2^A \rightarrow \mathbb{R}$. Here v is general submodular.

Reminder:

A function $v: 2^A \to \mathbb{R}$ is *submodular* if for any $S \subseteq T$ and $i \notin T$: $v(S \cup \{i\}) - v(S) \ge v(T \cup \{i\}) - v(T)$.

- Set of agents $A = \{1, 2, ..., n\}$.
- Each agent i comes with a *private* cost c_i .
- Buyer with a budget *B* and a valuation function $v: 2^A \rightarrow \mathbb{R}$. Here v is general submodular.

Find a set S that maximizes v(S), subject to $\sum_{i \in S} c_i \leq B$.

Buyer with budget *B* and a submodular valuation function

Buyer with budget *B* and a submodular valuation function

• Can we ensure that the agents report the c_is?

- Can we ensure that the agents report the c_i s?
- A **truthful** mechanism is an algorithm that uses payments to ensure that *no agent has an incentive to lie*.

- Can we ensure that the agents report the c_i s?
- A **truthful** mechanism is an algorithm that uses payments to ensure that *no agent has an incentive to lie*.
- In settings like this one, there is a unique payment scheme that works, given that our solution is monotone (Myerson)

Buyer with budget *B* and a submodular valuation function

Buyer with budget *B* and a submodular valuation function

- Set of agents $A = \{1, 2, ..., n\}$.
- Each agent i comes with a *private* cost c_i .
- Buyer with a budget *B* and a valuation function $v: 2^A \rightarrow \mathbb{R}$. Here v is general submodular.

Find a set S that maximizes v(S), subject to $\sum_{i \in S} c_i \leq B$.

Design truthful mechanisms with strong approximation guarantees.

- Set of agents $A = \{1, 2, ..., n\}$.
- Each agent i comes with a *private* cost c_i .
- Buyer with a budget *B* and a valuation function $v: 2^A \rightarrow \mathbb{R}$. Here v is general submodular.

Find a set S that maximizes v(S), subject to $\sum_{i \in S} c_i \leq B$.

Design truthful, budget-feasible mechanisms with strong approximation guarantees.

- Set of agents $A = \{1, 2, ..., n\}$.
- Each agent i comes with a *private* cost c_i .
- Buyer with a budget *B* and a valuation function $v: 2^A \rightarrow \mathbb{R}$. Here v is general submodular.

Find a set S that maximizes v(S), subject to $\sum_{i \in S} c_i \leq B$.

 $\sum_{i\in S} p_i \leq B$

Design truthful, budget-feasible mechanisms with strong approximation guarantees.

related work

- Initiated by [Singer '10]
- Additive and monotone submodular objectives
 [Singer '10], [Chen, Gravin, Lu '11], [Badanidiyuru, Kleinberg, Singer '12],
 [A., Birmpas, Markakis '16], [Leonardi, Monaco, Sankowski, Zhang '17],
 [Jalaly, Tardos '18], [Gravin '19]
- Subadditive, XOS, and symmetric submodular objectives [Dobzinski, Singer, Papadimitriou '11], [Bei, Chen, Gravin, Lu '12], [A., Birmpas, Markakis '17]
- For general submodular objectives an exponential-time
 768-approximation mechanism is implied by [Bei et al. '12]

budget-feasible mechanism design

- *Single-parameter* mechanism design problem.
- Suffices to find monotone algorithms. (Myerson's lemma)

Myerson's lemma

- Designing of truthful mechanisms (almost) the same as constructing monotone allocation rules.
- We say that an outcome rule f is monotone, if $i \in f(b_i, b_{-i}) \Rightarrow i \in f(b'_i, b_{-i})$ for $b'_i \leq b_i$ *i*'s bid Everyone else's bid (vector)

Lemma: Given a monotone algorithm f, there is a unique payment scheme p such that (f, p) is a truthful and individually rational mechanism.

budget-feasible mechanism design

- *Single-parameter* mechanism design problem.
- Suffices to find monotone algorithms. (Myerson's lemma)
- Presence of budget makes the problem very challenging.
- Even exponential truthful mechanisms are not obvious.

lower bound

lower bound

cost 1 cost 1 value 10 cost 1 cost 1 00 value 4.9 < $\cos 1$ $\cos 1$ value 4.9 06

value of optimal solution = 19.8

Buyer with budget B = 3and an additive valuation function

budget-feasible mechanism design

- *Single-parameter* mechanism design problem.
- Suffices to find monotone algorithms. (Myerson's lemma)
- Presence of budget makes the problem very challenging.
- Even exponential truthful mechanisms are not obvious.
- Only widely applicable approach –even for "easier" objectives – is using a very simple greedy subroutine.

related work – general approach

 Existing constant approximation mechanisms boil down to the following:

Output either the **best singleton** or a greedy solution.

 Inspired by the 3-approximation algorithm above, the greedy sorts the agents with respect to their marginal value per cost ratio and selects them up to a threshold.

related work – general approach

 Existing constant approximation mechanisms boil down to the following:

Output either the **best singleton** or a greedy solution.

- Inspired by the 3-approximation algorithm above, the greedy sorts the agents with respect to their marginal value per cost ratio and selects them up to a threshold.
- For non-monotone submodular objectives, this greedy approach and many reasonable variants— fails badly.

Main theorem: There is a polynomial-time, universally truthful, budget-feasible O(1)-approximation mechanism for (non-monotone) submodular objectives in the value query model.

Main theorem: There is a polynomial-time, universally truthful, budget-feasible O(1)-approximation mechanism for (non-monotone) submodular objectives in the value query model.

□ A function $v: 2^A \to \mathbb{R}$ is submodular if for any $S \subseteq T$ and $i \notin T$: $v(S \cup \{i\}) - v(S) \ge v(T \cup \{i\}) - v(T)$.

Main theorem: There is a polynomial-time, universally truthful, budget-feasible O(1)-approximation mechanism for (non-monotone) submodular objectives in the value query model.

□ A function $v: 2^A \to \mathbb{R}$ is submodular if for any $S \subseteq T$ and $i \notin T$: $v(S \cup \{i\}) - v(S) \ge v(T \cup \{i\}) - v(T)$.

In the value query model, we assume oracle access to v via value queries, i.e., we assume the existence of a polynomial time value oracle that returns v(S) when given as input a set S.

Main theorem: There is a polynomial-time, **universally truthful**, budget-feasible O(1)-approximation mechanism for (non-monotone) submodular objectives in the value query model.

□ A function $v: 2^A \to \mathbb{R}$ is submodular if for any $S \subseteq T$ and $i \notin T$: $v(S \cup \{i\}) - v(S) \ge v(T \cup \{i\}) - v(T)$.

- In the value query model, we assume oracle access to v via value queries, i.e., we assume the existence of a polynomial time value oracle that returns v(S) when given as input a set S.
- A randomized mechanism is universally truthful if it is a probability distribution over deterministic truthful mechanisms.

Main theorem: There is a polynomial-time, universally truthful, budget-feasible O(1)-approximation mechanism for (non-monotone) submodular objectives in the value query model.

The above result can be extended to the online (secretary) setting where the agents arrive in a uniformly random order.

Main theorem: There is a polynomial-time, universally truthful, budget-feasible O(1)-approximation mechanism for (non-monotone) submodular objectives in the value query model.

- The above result can be extended to the online (secretary) setting where the agents arrive in a uniformly random order.
- It can be also be generalized to the setting where the feasible sets satisfy combinatorial constraints.

Main theorem: There is a polynomial-time, universally truthful, budget-feasible O(1)-approximation mechanism for (non-monotone) submodular objectives in the value query model.

- The above result can be extended to the online (secretary) setting where the agents arrive in a uniformly random order.
- It can be also be generalized to the setting where the feasible sets satisfy combinatorial constraints.
- For the broader class of general XOS objectives, exponentially many queries are needed for any non-trivial approximation.

the mechanism

Submodular Mechanism(A, v, c, B)

• We randomly split A into A_1 and A_2 .

the core algorithmic idea

• We randomly split A into A_1 and A_2 .

the core algorithmic idea

- We randomly split A into A_1 and A_2 .
- We (approximately) solve on A₁ in order to obtain a rough estimate of the optimal solution in A₂.

- We build two solutions S_1 and S_2 each with budget B (say B_1, B_2).
- We iterate through the agents once. Each *i* is a candidate for the solution S_i that maximizes her marginal value.

• Agent *i* is added to
$$S_j$$
 if $c_i \le 10 \frac{v(i|S_j)}{OPT(A_1)}B \le B_j$

- We build two solutions S_1 and S_2 each with budget B (say B_1, B_2).
- We iterate through the agents once. Each *i* is a candidate for the solution S_i that maximizes her marginal value.

• Agent *i* is added to S_j if $c_i \le 10 \frac{v(i|S_j)}{OPT(A_1)}B \le B_j$ Agent *i* is efficient.

- We build two solutions S_1 and S_2 each with budget B (say B_1, B_2).
- We iterate through the agents once. Each *i* is a candidate for the solution S_j that maximizes her marginal value.

Enough leftover budget.

• Agent *i* is added to
$$S_j$$
 if $c_i \leq 10 \frac{v(i|S_j)}{OPT(A_1)} B \leq B_j$

- We build two solutions S_1 and S_2 each with budget B (say B_1, B_2).
- We iterate through the agents once. Each *i* is a candidate for the solution S_i that maximizes her marginal value.

Take it or leave it offer!

• Agent *i* is added to S_j if $c_i \leq 10 \frac{v(i|S_j)}{OPT(A_1)}B \leq B_j$

- We build two solutions S_1 and S_2 each with budget B (say B_1, B_2).
- We iterate through the agents once. Each *i* is a candidate for the solution S_i that maximizes her marginal value.

• Agent *i* is added to
$$S_j$$
 if $c_i \le 10 \frac{v(i|S_j)}{OPT(A_1)}B \le B_j$

- We build two solutions S_1 and S_2 each with budget B (say B_1, B_2).
- We iterate through the agents once. Each *i* is a candidate for the solution S_i that maximizes her marginal value.

• Agent *i* is added to
$$S_j$$
 if $c_i \le 10 \frac{v(i|S_j)}{OPT(A_1)}B \le B_j$

- We build two solutions S_1 and S_2 each with budget B (say B_1, B_2).
- We iterate through the agents once. Each *i* is a candidate for the solution S_i that maximizes her marginal value.

• Agent *i* is added to
$$S_j$$
 if $c_i \le 10 \frac{v(i|S_j)}{OPT(A_1)}B \le B_j$

- We build two solutions S_1 and S_2 each with budget B (say B_1, B_2).
- We iterate through the agents once. Each *i* is a candidate for the solution S_i that maximizes her marginal value.

• Agent *i* is added to
$$S_j$$
 if $c_i \le 10 \frac{v(i|S_j)}{OPT(A_1)}B \le B_j$

- We build two solutions S_1 and S_2 each with budget B (say B_1, B_2).
- We iterate through the agents once. Each *i* is a candidate for the solution S_i that maximizes her marginal value.

• Agent *i* is added to
$$S_j$$
 if $c_i \le 10 \frac{v(i|S_j)}{OPT(A_1)}B \le B_j$

- We build two solutions S_1 and S_2 each with budget B (say B_1, B_2).
- We iterate through the agents once. Each *i* is a candidate for the solution S_i that maximizes her marginal value.

• Agent *i* is added to
$$S_j$$
 if $c_i \le 10 \frac{v(i|S_j)}{OPT(A_1)}B \le B_j$

- We build two solutions S_1 and S_2 each with budget B (say B_1, B_2).
- We iterate through the agents once. Each *i* is a candidate for the solution S_i that maximizes her marginal value.

• Agent *i* is added to
$$S_j$$
 if $c_i \le 10 \frac{v(i|S_j)}{OPT(A_1)}B \le B_j$

- We build two solutions S_1 and S_2 each with budget B (say B_1, B_2).
- We iterate through the agents once. Each *i* is a candidate for the solution S_i that maximizes her marginal value.

• Agent *i* is added to
$$S_j$$
 if $c_i \le 10 \frac{v(i|S_j)}{OPT(A_1)}B \le B_j$

- We build two solutions S_1 and S_2 each with budget B (say B_1, B_2).
- We iterate through the agents once. Each *i* is a candidate for the solution S_i that maximizes her marginal value.

• Agent *i* is added to
$$S_j$$
 if $c_i \le 10 \frac{v(i|S_j)}{OPT(A_1)}B \le B_j$

• In the end, we return the best solution contained in of S_1 or S_2

• In the end, we return the best solution contained in of S_1 or S_2

• $p_i = \frac{10B}{OPT(A_1)}$ · (marginal value of *i* when added)

 The residual budgets B₁, B₂ are defined so that both S₁ and S₂ end up budget-feasible.

 If the purple part is non-empty then at some point we have spent most of the budget of S₁ or S₂.

- If the purple part is non-empty then at some point we have spent most of the budget of S_1 or S_2 . With constant probability
- Since we spend at a rate $\approx \frac{10B}{OPT(A_1)} \leq \frac{40B}{OPT(A)}$, this means we bought value $\geq \frac{OPT(A)}{40}$.

approximation ratio

approximation ratio

approximation ratio

• $\frac{OPT(A)}{4} \le OPT(A_2) \le v(C_1) + v(C_2) + v(C_3)$

•
$$\frac{OPT(A)}{4} \le OPT(A_2) \le v(C_1) + v(C_2) + v(C_3)$$

• By submodularity: $v(C_3) \le v(C_3 \cup S_1) + v(C_3 \cup S_2)$

•
$$\frac{OPT(A)}{4} \le OPT(A_2) \le v(C_1) + v(C_2) + v(C_3)$$

• By submodularity: $v(C_3) \le v(C_3 \cup S_1) + v(C_3 \cup S_2)$

• Again by submodularity: $v(C_3 \cup S_j) \le v(S_j) + \frac{OPT(A)}{10}$

• Putting them together:

$$\frac{PT(A)}{20} \le v(C_1) + v(C_2) + v(S_1) + v(S_2)$$

So, the (approximately) best solution contained in S₁ or S₂ is a constant fraction of OPT(A).

is this practical?

• A 505-approximation mechanism doesn't seem like much...

is this practical?

- A 505-approximation mechanism doesn't seem like much...
- Under a large market assumption, the ratio drops to ~ 20 .

is this practical?

- A 505-approximation mechanism doesn't seem like much...
- Under a large market assumption, the ratio drops to ~ 20 .
- When tested on real and synthetic data, the ratio was < 2.

directions for future work

- Is it possible to design deterministic mechanisms with the same properties?
- Can we achieve approximation guarantees close to those we know for the algorithmic counterparts of these problems?
- Better for restricted families of objectives, e.g., cut functions on directed graphs?
- Are there stronger negative results? Separation of randomized and deterministic mechanisms w.r.t. the number of queries?

directions for future work

- Is it possible to design deterministic mechanisms with the same properties?
- Can we achieve approximation guarantees close to those we know for the algorithmic counterparts of these problems?
- Better for restricted families of objectives, e.g., cut functions on directed graphs?
- Are there stronger negative results? Separation of randomized and deterministic mechanisms w.r.t. the number of queries?

thank you!