
Budget-Feasible Mechanism Design for 
Non-Monotone Submodular Objectives

Georgios Amanatidis

University of Essex

Guido Schäfer

Centrum Wiskunde & Informatica

Pieter Kleer

Max-Planck-Institut für Informatik



the setting

cost 𝑐1

cost 𝑐2

cost 𝑐3

value 𝑣1

value 𝑣2

value 𝑣3

Buyer with budget 𝐵
and valuation function 𝑣



the setting

cost 𝑐1

cost 𝑐2

cost 𝑐3

value 𝑣1

value 𝑣2

value 𝑣3

Models applications like:
• Influence maximization 

(advertisement on social networks)
• Crowdsourcing platforms

(e.g., Amazon Mechanical Turk, ClickWorker)
• Team formation
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the setting

 Set of items 𝐴 = 1, 2, … , 𝑛 .

 Each item 𝑖 comes with a cost 𝑐𝑖.

 Buyer with a budget 𝐵 and a valuation function 𝑣: 2𝐴 → ℝ.

 When 𝑣 is additive:

 Objective: Select a set S that maximizes 𝑣 𝑆 = σ𝑖∈S 𝑣𝑖
subject to the constraint σ𝑖∈𝑆 𝑐𝑖 ≤ 𝐵. 

 This is just Knapsack!



the setting

 Knapsack is an NP-hard problem.

 However, we can approximate the optimal solution within 
1 + 𝜖 in polynomial time.

 Straightforward 2-approximation algorithm:

 Sort all items from higher to lower density (value / cost);

 Greedily build a feasible solution 𝑆 w.r.t. this ordering;

 Return the best among 𝑆 and the item of highest value.

𝐴𝐿𝐺 is a 𝜌-approximation algorithm if 𝜌 ⋅ 𝑣 𝐴𝐿𝐺 𝐼 ≥ 𝑣 𝑂𝑃𝑇 𝐼 for all 𝐼.

Reminder:
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 Buyer with a budget 𝐵 and a valuation function 𝑣: 2𝐴 → ℝ.

 Typically, 𝑣 is submodular:

 𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆 ≥ 𝑣 𝑇 ∪ 𝑖 − 𝑣 𝑇
for any 𝑆 ⊆ 𝑇 and 𝑖 ∉ 𝑇
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𝑖’s marginal contribution
decreases as the set grows
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 Buyer with a budget 𝐵 and a valuation function 𝑣: 2𝐴 → ℝ.

 Typically, 𝑣 is submodular:

 𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆 ≥ 𝑣 𝑇 ∪ 𝑖 − 𝑣 𝑇
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 Select a set S that maximizes 𝑣 𝑆 subject to σ𝑖∈𝑆 𝑐𝑖 ≤ 𝐵. 

 Known 𝑒-approximation algorithm

𝑆
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𝑖

𝑖’s marginal contribution
decreases as the set grows



 This is still an NP-hard problem.

 Approximating the optimal solution within 
𝑒

𝑒−1
in 

polynomial time is the best one could hope for.

 Straightforward 3-approximation algorithm for monotone
submodular objectives:

 Sort all items from higher to lower marginal density;

 Greedily build a feasible solution 𝑆 w.r.t. this ordering;

 Return the best among 𝑆 and the item of highest value.

the setting
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 Each agent 𝑖 comes with a private cost 𝑐𝑖.

 Buyer with a budget 𝐵 and a valuation function 𝑣: 2𝐴 → ℝ.
Here 𝑣 is general submodular.

A function 𝑣: 2𝐴 → ℝ is submodular if for any 𝑆 ⊆ 𝑇 and 𝑖 ∉ 𝑇:
𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆 ≥ 𝑣 𝑇 ∪ 𝑖 − 𝑣 𝑇 .

Reminder:
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 Each agent 𝑖 comes with a private cost 𝑐𝑖.

 Buyer with a budget 𝐵 and a valuation function 𝑣: 2𝐴 → ℝ.
Here 𝑣 is general submodular.

Find a set 𝑆 that maximizes 𝑣 𝑆 , subject to σ𝑖∈𝑆 𝑐𝑖 ≤ 𝐵.



the setting

cost 𝑐1

cost 𝑐2

cost 𝑐3

value 𝑣1

value 𝑣2

value 𝑣3

Buyer with budget 𝐵
and a submodular
valuation function



the setting

cost 𝑐1

cost 𝑐2

cost 𝑐3

value 𝑣1

value 𝑣2

value 𝑣3

Buyer with budget 𝐵
and a submodular
valuation function

cost 𝑑1

cost 𝑑2

cost 𝑑3



the setting

cost 𝑐1

cost 𝑐2

cost 𝑐3

value 𝑣1

value 𝑣2

value 𝑣3

Buyer with budget 𝐵
and a submodular
valuation function

cost 𝑑1

cost 𝑑2

cost 𝑑3



the setting

cost 𝑐1

cost 𝑐2

cost 𝑐3

value 𝑣1

value 𝑣2

value 𝑣3

Buyer with budget 𝐵
and a submodular
valuation function

cost 𝑑1

cost 𝑑2

cost 𝑑3

payment  𝑝2 ≥ 𝑑2



the setting

cost 𝑐1

cost 𝑐2

cost 𝑐3

value 𝑣1

value 𝑣2

value 𝑣3

Buyer with budget 𝐵
and a submodular
valuation function

cost 𝑑1

cost 𝑑2

cost 𝑑3

payment  𝑝2 ≥ 𝑑2



the setting

 Can we ensure that the agents report the 𝑐𝑖s?



the setting

 Can we ensure that the agents report the 𝑐𝑖s?
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to ensure that no agent has an incentive to lie.



the setting

 Can we ensure that the agents report the 𝑐𝑖s?

 A truthful mechanism is an algorithm that uses payments 
to ensure that no agent has an incentive to lie.

 In settings like this one, there is a unique payment scheme
that works, given that our solution is monotone (Myerson)
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Find a set 𝑆 that maximizes 𝑣 𝑆 , subject to σ𝑖∈𝑆 𝑐𝑖 ≤ 𝐵.

Design truthful mechanisms with strong approximation 
guarantees.
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the setting

 Set of agents 𝐴 = 1, 2,… , 𝑛 .

 Each agent 𝑖 comes with a private cost 𝑐𝑖.

 Buyer with a budget 𝐵 and a valuation function 𝑣: 2𝐴 → ℝ.
Here 𝑣 is general submodular.

Find a set 𝑆 that maximizes 𝑣 𝑆 , subject to σ𝑖∈𝑆 𝑐𝑖 ≤ 𝐵.

Design truthful, budget-feasible mechanisms with strong 
approximation guarantees.

σ𝑖∈𝑆 𝑝𝑖 ≤ 𝐵
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 Additive and monotone submodular objectives
[Singer ’10], [Chen, Gravin, Lu ’11], [Badanidiyuru, Kleinberg, Singer ’12], 
[A., Birmpas, Markakis ’16], [Leonardi, Monaco, Sankowski, Zhang ’17], 
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768-approximation mechanism is implied by [Bei et al. ’12]



budget-feasible mechanism design

 Single-parameter mechanism design problem.

 Suffices to find monotone algorithms. (Myerson’s lemma)



Myerson’s lemma

 Designing of truthful mechanisms (almost) the same as 
constructing monotone allocation rules.

 We say that an outcome rule 𝑓 is monotone, if 
𝑖 ∈ 𝑓 𝑏𝑖 , 𝑏−𝑖 ⇒ 𝑖 ∈ 𝑓 𝑏𝑖

′ , 𝑏−𝑖 for 𝑏𝑖
′ ≤ 𝑏𝑖

Lemma: Given a monotone algorithm 𝑓, there is a unique 
payment scheme 𝑝 such that 𝑓, 𝑝 is a truthful and 
individually rational mechanism.

𝑖’s bid Everyone else’s bid (vector)



budget-feasible mechanism design

 Single-parameter mechanism design problem.

 Suffices to find monotone algorithms. (Myerson’s lemma)

 Presence of budget makes the problem very challenging.

 Even exponential truthful mechanisms are not obvious.
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and an additive
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cost 1

cost 1

cost 1

Must be included to the 
solution, or else we have an 

approximation factor > 2. 

How much should he get paid?

Impossible to achieve 
a factor better than 2



budget-feasible mechanism design

 Single-parameter mechanism design problem.

 Suffices to find monotone algorithms. (Myerson’s lemma)

 Presence of budget makes the problem very challenging.

 Even exponential truthful mechanisms are not obvious.

 Only widely applicable approach –even for “easier” 
objectives– is using a very simple greedy subroutine.



related work – general approach

 Existing constant approximation mechanisms boil down 
to the following:

Output either the best singleton or a greedy solution.

 Inspired by the 3-approximation algorithm above, the 
greedy sorts the agents with respect to their marginal 
value per cost ratio and selects them up to a threshold. 



related work – general approach

 Existing constant approximation mechanisms boil down 
to the following:

Output either the best singleton or a greedy solution.

 Inspired by the 3-approximation algorithm above, the 
greedy sorts the agents with respect to their marginal 
value per cost ratio and selects them up to a threshold. 

 For non-monotone submodular objectives, this greedy 
approach –and many reasonable variants– fails badly.
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query model.
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 A function 𝑣: 2𝐴 → ℝ is submodular if for any 𝑆 ⊆ 𝑇 and 𝑖 ∉ 𝑇:
𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆 ≥ 𝑣 𝑇 ∪ 𝑖 − 𝑣 𝑇 .

 In the value query model, we assume oracle access to 𝑣 via 
value queries, i.e., we assume the existence of a polynomial 
time value oracle that returns 𝑣 𝑆 when given as input a set 𝑆.

 A randomized mechanism is universally truthful if it is a proba-
bility distribution over deterministic truthful mechanisms.

Main theorem: There is a polynomial-time, universally 
truthful, budget-feasible O(1)-approximation mechanism 
for (non-monotone) submodular objectives in the value 
query model.
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setting where the agents arrive in a uniformly random order.
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our results

 The above result can be extended to the online (secretary) 
setting where the agents arrive in a uniformly random order.

 It can be also be generalized to the setting where the feasible 
sets satisfy combinatorial constraints.

 For the broader class of general XOS objectives, exponentially 
many queries are needed for any non-trivial approximation.

Main theorem: There is a polynomial-time, universally 
truthful, budget-feasible O(1)-approximation mechanism 
for (non-monotone) submodular objectives in the value 
query model.
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the core algorithmic idea

 We randomly split 𝐴 into 𝐴1 and 𝐴2.

 We (approximately) solve on 𝐴1 in order to obtain a rough 
estimate of the optimal solution in 𝐴2. 

𝐴1 𝐴2



the core algorithmic idea

 We build two solutions 𝑆1 and 𝑆2 each with budget 𝐵 (say 𝐵1, 𝐵2).

 We iterate through the agents once. Each 𝑖 is a candidate for the 
solution 𝑆𝑗 that maximizes her marginal value.
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𝑂𝑃𝑇 𝐴1

𝐵 ≤ 𝐵𝑗

𝐴2

Marginal value

𝑣 𝑖 𝑆𝑗 = 𝑣 𝑆𝑗 ∪ 𝑖 − 𝑣 𝑆𝑗
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Agent 𝑖 is efficient.
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 We iterate through the agents once. Each 𝑖 is a candidate for the 
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Enough leftover budget.
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 We build two solutions 𝑆1 and 𝑆2 each with budget 𝐵 (say 𝐵1, 𝐵2).

 We iterate through the agents once. Each 𝑖 is a candidate for the 
solution 𝑆𝑗 that maximizes her marginal value.

 Agent 𝑖 is added to 𝑆𝑗 if 𝑐𝑖 ≤ 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵 ≤ 𝐵𝑗

𝐴2

Marginal value

𝑣 𝑖 𝑆𝑗 = 𝑣 𝑆𝑗 ∪ 𝑖 − 𝑣 𝑆𝑗

Take it or leave it offer!



the core algorithmic idea

𝐴2

𝑆1

 We build two solutions 𝑆1 and 𝑆2 each with budget 𝐵 (say 𝐵1, 𝐵2).

 We iterate through the agents once. Each 𝑖 is a candidate for the 
solution 𝑆𝑗 that maximizes her marginal value.
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the core algorithmic idea

 In the end, we return the best solution contained in of 𝑆1 or 𝑆2

 𝑝𝑖 =
10𝐵

𝑂𝑃𝑇(𝐴1)
⋅ (marginal value of 𝑖 when added)

 The residual budgets 𝐵1, 𝐵2 are defined so that both 𝑆1 and 𝑆2
end up budget-feasible.
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𝑆1 𝑆2

 If the purple part is non-empty then at some point we have 
spent most of the budget of 𝑆1 or 𝑆2.

 Since we spend at a rate ≈
10𝐵

𝑂𝑃𝑇 𝐴1
≤

40𝐵

𝑂𝑃𝑇 𝐴
, this means we 

bought value ≥
𝑂𝑃𝑇(𝐴)

40
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By subadditivity
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≤ 𝑂𝑃𝑇 𝐴2 ≤ 𝑣 𝐶1 + 𝑣 𝐶2 + 𝑣 𝐶3

 By submodularity:  𝑣 𝐶3 ≤ 𝑣 𝐶3 ∪ 𝑆1 + 𝑣 𝐶3 ∪ 𝑆2

 Again by submodularity: 𝑣 𝐶3 ∪ 𝑆𝑗 ≤ 𝑣 𝑆𝑗 +
𝑂𝑃𝑇(𝐴)
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Everything is 
rejected because 

𝑐𝑖 > 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵

𝐴2

𝑆1 𝑆2

𝑂𝑃𝑇 𝐴2
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 Putting them together:
𝑂𝑃𝑇(𝐴)

20
≤ 𝑣 𝐶1 + 𝑣 𝐶2 + 𝑣 𝑆1 + 𝑣 𝑆2

 So, the (approximately) best solution contained in 𝑆1 or 𝑆2 is a 
constant fraction of 𝑂𝑃𝑇 𝐴 .



is this practical? 

 A 505-approximation mechanism doesn’t seem like much…



is this practical? 

 A 505-approximation mechanism doesn’t seem like much…

 Under a large market assumption, the ratio drops to ~20.



is this practical? 

 A 505-approximation mechanism doesn’t seem like much…

 Under a large market assumption, the ratio drops to ~20.

 When tested on real and synthetic data, the ratio was < 2.
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o Better for restricted families of objectives, e.g., cut functions 
on directed graphs?

o Are there stronger negative results? Separation of 
randomized and deterministic mechanisms w.r.t. the number 
of queries?
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thank you!


