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the setting

Models applications like:

* Influence maximization
(advertisement on social networks)

* Crowdsourcing platforms

(e.g., Amazon Mechanical Turk, ClickWorker)
* Team formation
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» Setofitems A4 =1{1, 2, ...,n}.
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 Buyer with a budget B and a valuation function v: 24 — R.
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the setting

» Setofitems A4 =1{1, 2, ...,n}.
» Each item i comes with a cost ;.
 Buyer with a budget B and a valuation function v: 24 — R.

e When v is additive:

* Objective: Select a set S that maximizes v(S) = )5 Vi
subject to the constraint };;cc¢; < B.

 This is just Knapsack!




the setting

Knapsack is an NP-hard problem.

Reminder:

ALG is a p-approximation algorithm if p - v(ALG(I)) > v(OPT(I)) for all 1.

However, we can approximate the optimal solution within
1 4+ € in polynomial time.

Straightforward 2-approximation algorithm:

-

Sort all items from higher to lower density (value/cost);\

Greedily build a feasible solution S w.r.t. this ordering;

Return the best among S and the item of highest value.
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» Setofitems A4 =1{1, 2, ...,n}.
» Each item i comes with a cost ;.
 Buyer with a budget B and a valuation function v: 24 — R.

» Typically, v is submodular:
iI’'s marginal contribution

v SU{i}) —v(S) =v(TUu{i}) —v(T) decreases as the set grows

foranyS € Tandi &T 'i
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the setting

» Setofitems A =1{1, 2, ...,n}.
» Each item i comes with a cost ;.
 Buyer with a budget B and a valuation function v: 24 — R.

» Typically, v is submodular:
iI’'s marginal contribution

v SU{i}) —v(S) =v(TUu{i}) —v(T) decreases as the set grows

foranyS € Tandi &T 'i

e Select a set S that maximizes v(S) subject to };;cs¢; < B.

» Known e-approximation algorithm

- /




the setting

* This is still an NP-hard problem.

* Approximating the optimal solution within i in

polynomial time is the best one could hope for.

e Straightforward 3-approximation algorithm for monotone
submodular objectives:

Sort all items from higher to lower marginal density;

Greedily build a feasible solution S w.r.t. this ordering;

Return the best among S and the item of highest value.
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the setting

» Setofagents 4 ={1, 2, ...,n}.
» Each agent i comes with a private cost c;.

 Buyer with a budget B and a valuation function v: 24 — R.
Here v is general submodular.

Reminder:

A function v: 24 = R is submodular if foranyS € T andi ¢ T
v(SUu{i}) —v(S) =2 v(Tuli}) —v(T).




the setting

» Setofagents 4 ={1, 2, ...,n}.
» Each agent i comes with a private cost c;.

 Buyer with a budget B and a valuation function v: 24 — R.
Here v is general submodular.

Find a set S that maximizes v(S), subjectto };;ccc; < B.
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the setting

* Can we ensure that the agents report the ¢;s?

o A truthful mechanism is an algorithm that uses payments
to ensure that no agent has an incentive to lie.

* In settings like this one, there is a unique payment scheme
that works, given that our solution is monotone (Myerson)
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the setting

» Setofagents 4 ={1, 2, ...,n}.
» Each agent i comes with a private cost c;.

 Buyer with a budget B and a valuation function v: 24 — R.
Here v is general submodular.

Find a set S that maximizes v(S), subjectto };;ccc; < B.

Design truthful mechanisms with strong approximation
guarantees.
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the setting

» Setofagents 4 ={1, 2, ...,n}.

» Each agent i comes with a private cost c;.

 Buyer with a budget B and a valuation function v: 24 — R.
Here v is general submodular.
Find a set S that maximizes v(S), subject to )..cccr<B.

dieshi =B

Design truthful, budget-feasible mechanisms with strong
approximation guarantees.
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* Initiated by [Singer "10]

» Additive and monotone submodular objectives
[Singer 10], [Chen, Gravin, Lu “11], [Badanidiyuru, Kleinberg, Singer '12],
[A., Birmpas, Markakis '16], [Leonardi, Monaco, Sankowski, Zhang "17],
[Jalaly, Tardos 18], [Gravin "19]

» Subadditive, X0S, and symmetric submodular objectives
[Dobzinski, Singer, Papadimitriou “11], [Bei, Chen, Gravin, Lu "12],
[A., Birmpas, Markakis "17]

*|For general submodular objectives an exponential-time
768-approximation mechanism is implied by [Bei et al. "12]
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budget-feasible mechanism design

* Single-parameter mechanism design problem.

» Suffices to find monotone algorithms. (Myerson’s lemma)




Myerson’s lemma

* Designing of truthful mechanisms (almost) the same as
constructing monotone allocation rules.

* We say that an outcome rule f is monotone, if
l Ef(bi,b_i) = 1 Ef(bl{,b_i) for b; < bi

i’s bid /

Everyone else’s bid (vector)

Lemma: Given a monotone algorithm f, there is a unique
payment scheme p such that (f, p) is a truthful and
individually rational mechanism.




budget-feasible mechanism design

* Single-parameter mechanism design problem.
» Suffices to find monotone algorithms. (Myerson’s lemma)
* Presence of budget makes the problem very challenging.

* Even exponential truthful mechanisms are not obvious.
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Must be included to the Iower bou nd

solution, or else we have an
approximation factor > 2.

How much should he get paid?

value 4.9 B

Impossible to achieve
a factor better than 2

Buyer with budget

B=3 value 4.9
and an additive

valuation function




budget-feasible mechanism design

* Single-parameter mechanism design problem.

» Suffices to find monotone algorithms. (Myerson’s lemma)
* Presence of budget makes the problem very challenging.
* Even exponential truthful mechanisms are not obvious.

* Only widely applicable approach —even for “easier”
objectives—is using a very simple greedy subroutine.




related work — general approach

» Existing constant approximation mechanisms boil down
to the following:

Output either the best singleton or a greedy solution.

* Inspired by the 3-approximation algorithm above, the
greedy sorts the agents with respect to their marginal
value per cost ratio and selects them up to a threshold.




related work — general approach

» Existing constant approximation mechanisms boil down
to the following:

Output either the best singleton or a greedy solution.

* Inspired by the 3-approximation algorithm above, the
greedy sorts the agents with respect to their marginal
value per cost ratio and selects them up to a threshold.

* For non-monotone submodular objectives, this greedy
approach —and many reasonable variants— fails badly.
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our results

Main theorem: There is a polynomial-time, universally
truthful, budget-feasible O(1)-approximation mechanism
for (non-monotone) submodular objectives in the value

query model.

o A function v: 24 = Ris submodular if forany S € T andi & T:
v(SU{i}) —v(S) =v(Tu{i}) —v(T).

0 In the value query model, we assume oracle access to v via
value queries, i.e., we assume the existence of a polynomial

0 A randomized mechanism is universally truthful if it is a proba-
bility distribution over deterministic truthful mechanisms.

-

time value oracle that returns v(S) when given as input a set S.

/
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our results

Main theorem: There is a polynomial-time, universally
truthful, budget-feasible O(1)-approximation mechanism
for (non-monotone) submodular objectives in the value
query model.

0 The above result can be extended to the online (secretary)
setting where the agents arrive in a uniformly random order.

0 It can be also be generalized to the setting where the feasible
sets satisfy combinatorial constraints.

0 For the broader class of general XOS objectives, exponentially
many queries are needed for any non-trivial approximation.
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the mechanism

SUBMODULAR MECHANISM(A, v, ¢, B)
1 With probability p = 1/5:

2 return i* € arg max; _, v(i)
3 With probability1 —p :
4 Put each agent in either A; or A, independently at random w.p. %

x =~ v(oPT(A,))

|

6 51252:0;31:B2:B \
7 || for eachie€ A, do Key idea: simultaneous

8 Let j € argmax; ¢ ; 5y v([Sk) threshold greedy algorithm

9 if ¢; < va(r.lS ;) < B; then )
10 S; =8; Ui}

11 Bj = B; — 1(‘\'B‘v(zlS )

12 for j € {1,2} do

13 B Tj = ALG(Sj)

14 Let S be the best solution among Sy, S,, T1, T,
15 return S




the core algorithmic idea
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* We randomly split A into A; and A,.
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* We randomly split A into A; and A,.
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the core algorithmic idea

Y 4, N
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* We randomly split A into A; and A,.

* We (approximately) solve on A; in order to obtain a rough
estimate of the optimal solution in 4,.
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* We build two solutions §; and S, each with budget B (say By, B>).

» We iterate through the agents once. Each i is a candidate for the
solution §; that maximizes her marginal value.

v(i|S))
OPT (A1) 5= B

* AgentiisaddedtoS;ifc; < 10
-




the core algorithmic idea

4, A

Marginal value

v(ilS;) = v(s; v {i}) — v(S))

- /

* We build two solutions §; and S, each with budget B (say By, B>).

» We iterate through the agents once. Each i is a candidate for the
solution §; that maximizes her marginal value.

Agent i is efficient.
B}

[|S;
* Agent i is added to §; n{cl <10—=% 7(15))
OPT(4,)
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the core algorithmic idea

4, A

Marginal value

v(ilS;) = v(s; v {i}) — v(S))

- /

* We build two solutions §; and S, each with budget B (say By, B>).

» We iterate through the agents once. Each i is a candidate for the

solution §; that maximizes her marginal value.
Enough leftover budget.

) . v(i5))
* Agentiis addedto S; if ¢ s{m T B < B}

- /




the core algorithmic idea

/s N

Marginal value

v(ilS;) = v(s; v {i}) — v(S))

" /

* We build two solutions §; and S, each with budget B (say By, B>).

» We iterate through the agents once. Each i is a candidate for the
solution §; that maximizes her marginal value.

Take it or leave it offer!
B}

* Agentiisaddedto S;ifc; < _[10 ( | 1)
OPT (A1)
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Marginal value

v(i|S;) = v(s; u{i}) —v(s))

N B

(4, TN

Everything else
was rejected!

* We build two solutions §; and S, each with budget B (say By, B>).

» We iterate through the agents once. Each i is a candidate for the

solution §; that maximizes her marginal value.

o)

* AgentiisaddedtoS;ifc; <10 OPT(A,)

-
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(4, TN

Everything else
was rejected!

N

* |n the end, we return the best solution contained in of §; or S,

__ 10B

* Pi = Goraan (marginal value of i when added)

* The residual budgets B, B, are defined so that both §; and S,
end up budget-feasible.
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OPT(4A4) \ S1 S, /
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Rejected because

(1) , T
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Rejected because

* |f the purple part is non-empty then at some point we have

spent most of the budget of S; or S,.




approximation ratio

Rejected because

" a, o)
OPT(Aq) J

Rejected because
o(i5)

M
Cc;j > 100PT—(Al) \ S1 S, /

* |f the purple part is non-empty then at some point we have
spent most of the budget of S; or ;. With constant probability

OPT(A,) — OPT(A)’

this means we

» Since we spend at a rate =

OPT(A)

bought value = :
40
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3 v(il$))

With constant 51 52 /
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\ f- By subadditivity
. OPT(A)
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* By submodularity: v(C3) < v(C3US;) +v(C3US),)
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OPT(4,)

& =

. OPT(4)

< OPT(A,) < v(Cy) +v(Cy) +v(C3)

\\ Everything is

rejected because

o> 10205)
OPT(A,)

e By submodularity: v(C3) < v(C3US;) +v(C3US,)

* Again by submodularity: v(6'3 U Sj) < v(Sj) +

OPT(A)
10
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Z R

OPT(A,) \\ Everything is

rejected because
L OPT(A4,)

e Putting them together:

2D < (€y) +v(Cy) + v(Sy) + v(S2)

* So, the (approximately) best solution contained in §; or S, is a
constant fraction of OPT (4).
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is this practical?

* A 505-approximation mechanism doesn’t seem like much...
* Under a large market assumption, the ratio drops to ~20.

* When tested on real and synthetic data, the ratio was < 2.




directions for future work

Is it possible to design deterministic mechanisms with the
same properties?

Can we achieve approximation guarantees close to those we
know for the algorithmic counterparts of these problems?

Better for restricted families of objectives, e.g., cut functions
on directed graphs?

Are there stronger negative results? Separation of
randomized and deterministic mechanisms w.r.t. the number
of queries?
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Is it possible to design deterministic mechanisms with the
same properties?

Can we achieve approximation guarantees close to those we
know for the algorithmic counterparts of these problems?

Better for restricted families of objectives, e.g., cut functions
on directed graphs?

Are there stronger negative results? Separation of
randomized and deterministic mechanisms w.r.t. the number
of queries?

thank you!




