Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives

Georgios Amanatidis
University of Essex

Pieter Kleer
Max-Planck-Institut für Informatik

Guido Schäfer
Centrum Wiskunde & Informatica
Buyer with budget B and valuation function v

value v_1

value v_2

value v_3

cost c_1

cost c_2

cost c_3
the setting

Models applications like:

- Influence maximization (advertisement on social networks)
- Crowdsourcing platforms (e.g., Amazon Mechanical Turk, ClickWorker)
- Team formation

Buyer with budget B and valuation function v
the setting

Buyer with budget B

Value v_1
Cost c_1

Value v_2
Cost c_2

Value v_3
Cost c_3
the setting

- Set of items $A = \{1, 2, \ldots, n\}$.
- Each item i comes with a cost c_i.
- Buyer with a budget B and a valuation function $v: 2^A \rightarrow \mathbb{R}$.
the setting

Buyer with budget B and an additive valuation function

\[\text{value } v_1 \quad \text{cost } c_1 \]

\[\text{value } v_2 \quad \text{cost } c_2 \]

\[\text{value } v_3 \quad \text{cost } c_3 \]

Total value = $v_2 + v_3$
the setting

- Set of items $A = \{1, 2, \ldots, n\}$.
- Each item i comes with a cost c_i.
- Buyer with a budget B and a valuation function $v: 2^A \rightarrow \mathbb{R}$.
the setting

- Set of items $A = \{1, 2, \ldots, n\}$.
- Each item i comes with a cost c_i.
- Buyer with a budget B and a valuation function $v: 2^A \rightarrow \mathbb{R}$.
- When v is additive:
 - Objective: Select a set S that maximizes $v(S) = \sum_{i \in S} v_i$ subject to the constraint $\sum_{i \in S} c_i \leq B$.
 - This is just Knapsack!
the setting

- Knapsack is an NP-hard problem.

Reminder:

\(ALG \) is a \(\rho \)-approximation algorithm if \(\rho \cdot v(ALG(I)) \geq v(OPT(I)) \) for all \(I \).

- However, we can approximate the optimal solution within \(1 + \varepsilon \) in polynomial time.

- Straightforward 2-approximation algorithm:
 - Sort all items from higher to lower density (value / cost);
 - Greedily build a feasible solution \(S \) w.r.t. this ordering;
 - Return the best among \(S \) and the item of highest value.
the setting

Buyer with budget B and a submodular valuation function

value v_1
cost c_1

value v_2
cost c_2

value v_3
cost c_3

Total value $\leq v_2 + v_3$
the setting

- Set of items $A = \{1, 2, \ldots, n\}$.
- Each item i comes with a cost c_i.
- Buyer with a budget B and a valuation function $v: 2^A \to \mathbb{R}$.
- Typically, v is submodular:
 - $v(S \cup \{i\}) - v(S) \geq v(T \cup \{i\}) - v(T)$ for any $S \subseteq T$ and $i \notin T$.
 - i's marginal contribution decreases as the set grows.
the setting

- Set of items $A = \{1, 2, \ldots, n\}$.
- Each item i comes with a cost c_i.
- Buyer with a budget B and a valuation function $v: 2^A \rightarrow \mathbb{R}$.
- Typically, v is submodular:
 - $v(S \cup \{i\}) - v(S) \geq v(T \cup \{i\}) - v(T)$ for any $S \subseteq T$ and $i \notin T$
- Select a set S that maximizes $v(S)$ subject to $\sum_{i \in S} c_i \leq B$.

i’s marginal contribution decreases as the set grows
the setting

- Set of items $A = \{1, 2, \ldots, n\}$.
- Each item i comes with a cost c_i.
- Buyer with a budget B and a valuation function $v: 2^A \rightarrow \mathbb{R}$.
- Typically, v is submodular:
 - $v(S \cup \{i\}) - v(S) \geq v(T \cup \{i\}) - v(T)$ for any $S \subseteq T$ and $i \not\in T$.
- Select a set S that maximizes $v(S)$ subject to $\sum_{i \in S} c_i \leq B$.
- Known e-approximation algorithm.
This is still an NP-hard problem.

Approximating the optimal solution within \(\frac{e}{e-1} \) in polynomial time is the best one could hope for.

Straightforward 3-approximation algorithm for monotone submodular objectives:

- Sort all items from higher to lower marginal density;
- Greedily build a feasible solution \(S \) w.r.t. this ordering;
- Return the best among \(S \) and the item of highest value.
the setting

Buyer with budget B and a submodular valuation function
the setting

- Set of agents $A = \{1, 2, \ldots, n\}$.
- Each agent i comes with a *private* cost c_i.
- Buyer with a budget B and a valuation function $v: 2^A \to \mathbb{R}$.
the setting

- Set of agents $A = \{1, 2, \ldots, n\}$.
- Each agent i comes with a private cost c_i.
- Buyer with a budget B and a valuation function $v: 2^A \to \mathbb{R}$. Here v is general submodular.
the setting

• Set of agents \(A = \{1, 2, \ldots, n\} \).

• Each agent \(i \) comes with a private cost \(c_i \).

• Buyer with a budget \(B \) and a valuation function \(v: 2^A \to \mathbb{R} \). Here \(v \) is general submodular.

Reminder:

A function \(v: 2^A \to \mathbb{R} \) is submodular if for any \(S \subseteq T \) and \(i \notin T \):
\[
 v(S \cup \{i\}) - v(S) \geq v(T \cup \{i\}) - v(T) .
\]
the setting

• Set of agents $A = \{1, 2, \ldots, n\}$.

• Each agent i comes with a private cost c_i.

• Buyer with a budget B and a valuation function $v: 2^A \rightarrow \mathbb{R}$. Here v is general submodular.

Find a set S that maximizes $v(S)$, subject to $\sum_{i \in S} c_i \leq B$.
the setting

Buyer with budget B and a submodular valuation function

- Cost c_1
- Value v_1
- Cost c_2
- Value v_2
- Cost c_3
- Value v_3
Buyer with budget B and a submodular valuation function

the setting

Value v_1, Cost d_1, Cost c_1

Value v_2, Cost d_2, Cost c_2

Value v_3, Cost d_3, Cost c_3
the setting

Buyer with budget B and a submodular valuation function

cost c_1

cost c_2

cost c_3

cost d_1

cost d_2

cost d_3

value v_1

value v_2

value v_3
the setting

Buyer with budget B and a submodular valuation function

value v_1, cost c_1
value v_2, cost c_2
value v_3, cost c_3

payment p_1
payment p_2
Buyer with budget B and a submodular valuation function.
the setting

- Can we ensure that the agents report the c_is?
Can we ensure that the agents report the c_is?

A **truthful** mechanism is an algorithm that uses payments to ensure that *no agent has an incentive to lie.*
the setting

• Can we ensure that the agents report the c_is?

• A **truthful** mechanism is an algorithm that uses payments to ensure that *no agent has an incentive to lie*.

• In settings like this one, there is a **unique payment scheme** that works, given that our solution is **monotone** (Myerson)
Buyer with budget B and a submodular valuation function.
the setting

Buyer with budget \(B \) and a submodular valuation function

<table>
<thead>
<tr>
<th>Cost</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1)</td>
<td>(v_1)</td>
</tr>
<tr>
<td>(c_2)</td>
<td>(v_2)</td>
</tr>
<tr>
<td>(c_3)</td>
<td>(v_3)</td>
</tr>
</tbody>
</table>
the setting

Buyer with budget B and a submodular valuation function

payment p_1

payment p_2

value v_1

value v_2

value v_3

Cost c_1

Cost c_2

Cost c_3
Buyer with budget B and a submodular valuation function.

The setting:

- Payment $p_1 \geq c_1$
- Payment $p_2 \geq c_2$
- Value v_1
- Cost c_1
- Value v_2
- Cost c_2
- Value v_3
- Cost c_3
the setting

- Set of agents $A = \{1, 2, \ldots, n\}$.
- Each agent i comes with a private cost c_i.
- Buyer with a budget B and a valuation function $v: 2^A \rightarrow \mathbb{R}$. Here v is general submodular.

Find a set S that maximizes $v(S)$, subject to $\sum_{i \in S} c_i \leq B$.

Design **truthful** mechanisms with strong approximation guarantees.
the setting

- Set of agents $A = \{1, 2, \ldots, n\}$.
- Each agent i comes with a private cost c_i.
- Buyer with a budget B and a valuation function $v: 2^A \to \mathbb{R}$. Here v is general submodular.

Find a set S that maximizes $v(S)$, subject to $\sum_{i \in S} c_i \leq B$.

Design truthful, budget-feasible mechanisms with strong approximation guarantees.
the setting

- Set of agents $A = \{1, 2, \ldots, n\}$.
- Each agent i comes with a *private* cost c_i.
- Buyer with a budget B and a valuation function $v: 2^A \rightarrow \mathbb{R}$. Here v is *general submodular*.

Find a set S that maximizes $v(S)$, subject to $\sum_{i \in S} c_i \leq B$.

Design **truthful**, **budget-feasible** mechanisms with strong approximation guarantees.
related work

- Initiated by [Singer ’10]

- Additive and monotone submodular objectives
 [Singer ’10], [Chen, Gravin, Lu ’11], [Badanidiyuru, Kleinberg, Singer ’12],
 [A., Birmpas, Markakis ’16], [Leonardi, Monaco, Sankowski, Zhang ’17],
 [Jalaly, Tardos ’18], [Gravin ’19]

- Subadditive, XOS, and symmetric submodular objectives
 [Dobzinski, Singer, Papadimitriou ’11], [Bei, Chen, Gravin, Lu ’12],
 [A., Birmpas, Markakis ’17]

- For general submodular objectives an exponential-time 768-approximation mechanism is implied by [Bei et al. ’12]
budget-feasible mechanism design

- *Single-parameter* mechanism design problem.
- Suffices to find monotone algorithms. *(Myerson’s lemma)*
Myerson’s lemma

- Designing of truthful mechanisms (almost) the same as constructing monotone allocation rules.

- We say that an outcome rule \(f \) is monotone, if

\[
i \in f(b_i, b_{-i}) \Rightarrow i \in f(b'_i, b_{-i}) \text{ for } b'_i \leq b_i
\]

Lemma: Given a monotone algorithm \(f \), there is a unique payment scheme \(p \) such that \((f, p)\) is a truthful and individually rational mechanism.
budget-feasible mechanism design

- *Single-parameter* mechanism design problem.
- Suffices to find monotone algorithms. (Myerson’s lemma)
- Presence of budget makes the problem very challenging.
- Even exponential truthful mechanisms are not obvious.
lower bound

Buyer with budget $B = 3$
and an additive valuation function
value of optimal solution $= 19.8$

Buyer with budget $B = 3$ and an additive valuation function

lower bound
Must be included to the solution, or else we have an approximation factor > 2.

How much should he get paid?

Buyer with budget $B = 3$ and an additive valuation function

lower bound
Must be included to the solution, or else we have an approximation factor > 2.

How much should he get paid?

Buyer with budget $B = 3$ and an additive valuation function

lower bound

suppose $p_1 < 3$

value 10

value 4.9

value 4.9
lower bound

Must be included to the solution, or else we have an approximation factor > 2.

How much should he get paid?

Buyer with budget $B = 3$ and an additive valuation function

Suppose $p_1 < 3$
Buyer with budget $B = 3$ and an additive valuation function must be included to the solution, or else we have an approximation factor > 2.

How much should he get paid?

Lower bound

Must pay $p_1 = 3$
Buyer with budget $B = 3$ and an additive valuation function.

Must be included to the solution, or else we have an approximation factor > 2.

How much should he get paid?

must pay $p_1 = 3$ even when he tells the truth!

lower bound
lower bound

How much should he get paid?

Buyer with budget $B = 3$ and an additive valuation function must be included to the solution, or else we have an approximation factor > 2.

Must be included to the solution, or else we have an approximation factor > 2.

Impossible to achieve a factor better than 2

How much should he get paid?

Buyer with budget $B = 3$ and an additive valuation function

must pay $p_1 = 3$ even when he tells the truth!
budget-feasible mechanism design

- *Single-parameter* mechanism design problem.
- Suffices to find monotone algorithms. (Myerson’s lemma)
- Presence of budget makes the problem very challenging.
- Even exponential truthful mechanisms are not obvious.
- Only widely applicable approach—even for “easier” objectives—is using a very simple greedy subroutine.
related work – general approach

- Existing constant approximation mechanisms boil down to the following:

 Output either the best singleton or a greedy solution.

- Inspired by the 3-approximation algorithm above, the greedy sorts the agents with respect to their **marginal value per cost ratio** and selects them up to a threshold.
related work – general approach

- Existing constant approximation mechanisms boil down to the following:

 Output either the best singleton or a greedy solution.

- Inspired by the 3-approximation algorithm above, the greedy sorts the agents with respect to their marginal value per cost ratio and selects them up to a threshold.

- For non-monotone submodular objectives, this greedy approach—and many reasonable variants—fails badly.
our results

Main theorem: There is a polynomial-time, universally truthful, budget-feasible $O(1)$-approximation mechanism for (non-monotone) submodular objectives in the value query model.
Main theorem: There is a polynomial-time, universally truthful, budget-feasible $O(1)$-approximation mechanism for (non-monotone) submodular objectives in the value query model.

- A function $v : 2^A \rightarrow \mathbb{R}$ is submodular if for any $S \subseteq T$ and $i \notin T$:
 $$v(S \cup \{i\}) - v(S) \geq v(T \cup \{i\}) - v(T).$$
our results

Main theorem: There is a polynomial-time, universally truthful, budget-feasible $O(1)$-approximation mechanism for (non-monotone) submodular objectives in the value query model.

- A function $v: 2^A \to \mathbb{R}$ is submodular if for any $S \subseteq T$ and $i \notin T$:
 $$v(S \cup \{i\}) - v(S) \geq v(T \cup \{i\}) - v(T).$$

- In the value query model, we assume oracle access to v via value queries, i.e., we assume the existence of a polynomial time value oracle that returns $v(S)$ when given as input a set S.
Main theorem: There is a polynomial-time, universally truthful, budget-feasible $O(1)$-approximation mechanism for (non-monotone) submodular objectives in the value query model.

- A function $v: 2^A \rightarrow \mathbb{R}$ is **submodular** if for any $S \subseteq T$ and $i \notin T$:
 $$v(S \cup \{i\}) - v(S) \geq v(T \cup \{i\}) - v(T).$$

- In the **value query model**, we assume oracle access to v via value queries, i.e., we assume the existence of a polynomial time value oracle that returns $v(S)$ when given as input a set S.

- A randomized mechanism is **universally truthful** if it is a probability distribution over deterministic truthful mechanisms.
Main theorem: There is a polynomial-time, universally truthful, budget-feasible $O(1)$-approximation mechanism for (non-monotone) submodular objectives in the value query model.

- The above result can be extended to the online (secretary) setting where the agents arrive in a uniformly random order.
our results

Main theorem: There is a polynomial-time, universally truthful, budget-feasible $O(1)$-approximation mechanism for (non-monotone) submodular objectives in the value query model.

- The above result can be extended to the **online (secretary) setting** where the agents arrive in a uniformly random random order.
- It can be also be generalized to the setting where the feasible sets satisfy **combinatorial constraints**.
our results

Main theorem: There is a polynomial-time, universally truthful, budget-feasible O(1)-approximation mechanism for (non-monotone) submodular objectives in the value query model.

- The above result can be extended to the online (secretary) setting where the agents arrive in a uniformly random order.

- It can be also be generalized to the setting where the feasible sets satisfy combinatorial constraints.

- For the broader class of general XOS objectives, exponentially many queries are needed for any non-trivial approximation.
the mechanism

Submodular Mechanism (A, v, c, B)

1. With probability $p = 1/5$:
 - **return** $i^* \in \arg\max_{i \in A} v(i)$
2. With probability $1 - p$:
 - Put each agent in either A_1 or A_2 independently at random w.p. $\frac{1}{2}$
 - $x \approx v(\text{OPT}(A_1))$
 - $S_1 = S_2 = \emptyset$; $B_1 = B_2 = B$
 - **for each** $i \in A_2$ **do**
 - Let $j \in \arg\max_{k \in \{1, 2\}} v(i|S_k)$
 - **if** $c_i \leq \frac{10B}{x} v(i|S_j) \leq B_j$ **then**
 - $S_j = S_j \cup \{i\}$
 - $B_j = B_j - \frac{10B}{x} v(i|S_j)$
 - **for** $j \in \{1, 2\}$ **do**
 - $T_j = \text{ALG}(S_j)$
 - Let S be the best solution among S_1, S_2, T_1, T_2
 - **return** S

Key idea: simultaneous threshold greedy algorithm
the core algorithmic idea

Initial set of agents A

- We randomly split A into A_1 and A_2.
We randomly split A into A_1 and A_2.

The core algorithmic idea
The core algorithmic idea

- We randomly split A into A_1 and A_2.
- We (approximately) solve on A_1 in order to obtain a rough estimate of the optimal solution in A_2.
We build two solutions S_1 and S_2 each with budget B (say B_1, B_2).

We iterate through the agents once. Each i is a candidate for the solution S_j that maximizes her marginal value.

Agent i is added to S_j if $c_i \leq 10 \frac{v(i|S_j)}{OPT(A_1)} B \leq B_j$.

Marginal value

$$v(i|S_j) = v(S_j \cup \{i\}) - v(S_j)$$
the core algorithmic idea

We build two solutions S_1 and S_2 each with budget B (say B_1, B_2).

We iterate through the agents once. Each i is a candidate for the solution S_j that maximizes her marginal value.

Agent i is added to S_j if $c_i \leq 10 \frac{v(i|S_j)}{OPT(A_1)} B \leq B_j$.
the core algorithmic idea

- We build two solutions S_1 and S_2 each with budget B (say B_1, B_2).
- We iterate through the agents once. Each i is a candidate for the solution S_j that maximizes her marginal value.
- Agent i is added to S_j if $c_i \leq 10 \frac{v(i|S_j)}{OPT(A_1)} B \leq B_j$

Marginal value

$v(i|S_j) = v(S_j \cup \{i\}) - v(S_j)$

A_2

Enough leftover budget.
the core algorithmic idea

Marginal value
\[v(i|S_j) = v(S_j \cup \{i\}) - v(S_j) \]

- We build two solutions \(S_1 \) and \(S_2 \) each with budget \(B \) (say \(B_1, B_2 \)).
- We iterate through the agents once. Each \(i \) is a candidate for the solution \(S_j \) that maximizes her marginal value.
- Agent \(i \) is added to \(S_j \) if \(c_i \leq 10 \frac{v(i|S_j)}{OPT(A_1)} B \leq B_j \)
the core algorithmic idea

- We build two solutions S_1 and S_2 each with budget B (say B_1, B_2).
- We iterate through the agents once. Each i is a candidate for the solution S_j that maximizes her marginal value.
- Agent i is added to S_j if $c_i \leq 10 \frac{v(i|S_j)}{OPT(A_1)} B \leq B_j$
We build two solutions S_1 and S_2 each with budget B (say B_1, B_2).

We iterate through the agents once. Each i is a candidate for the solution S_j that maximizes her marginal value.

Agent i is added to S_j if $c_i \leq 10 \frac{v(i|S_j)}{OPT(A_1)} B \leq B_j$
the core algorithmic idea

We build two solutions S_1 and S_2 each with budget B (say B_1, B_2).

We iterate through the agents once. Each i is a candidate for the solution S_j that maximizes her marginal value.

Agent i is added to S_j if $c_i \leq 10 \frac{v(i|S_j)}{OPT(A_1)} B \leq B_j$.

Marginal value

$$v(i|S_j) = v(S_j \cup \{i\}) - v(S_j)$$
the core algorithmic idea

We build two solutions S_1 and S_2 each with budget B (say B_1, B_2).

We iterate through the agents once. Each i is a candidate for the solution S_j that maximizes her marginal value.

Agent i is added to S_j if $c_i \leq 10 \frac{v(i|S_j)}{OPT(A_1)} B \leq B_j$
the core algorithmic idea

We build two solutions S_1 and S_2 each with budget B (say B_1, B_2).

We iterate through the agents once. Each i is a candidate for the solution S_j that maximizes her marginal value.

Agent i is added to S_j if $c_i \leq 10 \frac{v(i|S_j)}{OPT(A_1)} B \leq B_j$.

Marginal value

$v(i|S_j) = v(S_j \cup \{i\}) - v(S_j)$
the core algorithmic idea

Marginal value
\[v(i|S_j) = v(S_j \cup \{i\}) - v(S_j) \]

- We build two solutions \(S_1 \) and \(S_2 \) each with budget \(B \) (say \(B_1, B_2 \)).
- We iterate through the agents once. Each \(i \) is a candidate for the solution \(S_j \) that maximizes her marginal value.
- Agent \(i \) is added to \(S_j \) if \(c_i \leq 10 \frac{v(i|S_j)}{OPT(A_1)} B \leq B_j \)
We build two solutions S_1 and S_2 each with budget B (say B_1, B_2).

We iterate through the agents once. Each i is a candidate for the solution S_j that maximizes her marginal value.

Agent i is added to S_j if $c_i \leq 10 \frac{v(i|S_j)}{OPT(A_1)} B \leq B_j$.

Marginal value

$$v(i|S_j) = v(S_j \cup \{i\}) - v(S_j)$$
the core algorithmic idea

Marginal value
\[v(i|S_j) = v(S_j \cup \{i\}) - v(S_j) \]

- We build two solutions \(S_1 \) and \(S_2 \) each with budget \(B \) (say \(B_1, B_2 \)).
- We iterate through the agents once. Each \(i \) is a candidate for the solution \(S_j \) that maximizes her marginal value.
- Agent \(i \) is added to \(S_j \) if \(c_i \leq 10 \frac{v(i|S_j)}{OPT(A_1)} B \leq B_j \)
the core algorithmic idea

We build two solutions S_1 and S_2 each with budget B (say B_1, B_2).

We iterate through the agents once. Each i is a candidate for the solution S_j that maximizes her marginal value.

Agent i is added to S_j if $c_i \leq 10 \frac{v(i|S_j)}{OPT(A_1)} B \leq B_j$
In the end, we return the best solution contained in S_1 or S_2.

Everything else was rejected!
the core algorithmic idea

- In the end, we return the best solution contained in of S_1 or S_2

- $p_i = \frac{10B}{OPT(A_1)} \cdot \text{(marginal value of } i \text{ when added)}$

- The residual budgets B_1, B_2 are defined so that both S_1 and S_2 end up budget-feasible.
approximation ratio

A_2

S_1 S_2

Rejected!
approximation ratio

Rejected because $c_i > 10 \frac{v(i|S_j)}{OPT(A_1)} B$

Rejected because $10 \frac{v(i|S_j)}{OPT(A_1)} B > B_j$
approximation ratio

Rejected because $c_i > 10 \frac{v(i|S_j)}{OPT(A_1)} B$

Rejected because $10 \frac{v(i|S_j)}{OPT(A_1)} B > B_j$

- If the purple part is non-empty then at some point we have spent most of the budget of S_1 or S_2.
approximation ratio

- If the purple part is non-empty then at some point we have spent most of the budget of S_1 or S_2.
- Since we spend at a rate $\approx \frac{10B}{OPT(A_1)} \leq \frac{40B}{OPT(A)}$, this means we bought value $\geq \frac{OPT(A)}{40}$.

\[c_i > 10 \frac{v(i | S_j)}{OPT(A_1)} B \]

\[10 \frac{v(i | S_j)}{OPT(A_1)} B > B_j \]
approximation ratio

Suppose everything is rejected because

\[c_i > 10 \frac{v(i \mid S_j)}{OPT(A_1)} B \]
Suppose everything is rejected because
\[c_i > 10 \frac{v(i|S_j)}{OPT(A_1)} B \]
approximation ratio

Suppose everything is rejected because

\[c_i > 10 \frac{v(i|S_j)}{OPT(A_1)} B \]
approximation ratio

Everything is rejected because

\[c_i > 10 \frac{v(i|S_j)}{\text{OPT}(A_1)} B \]

\[\frac{\text{OPT}(A)}{4} \leq \text{OPT}(A_2) \leq v(C_1) + v(C_2) + v(C_3) \]
approximation ratio

Everything is rejected because \(c_i > 10 \frac{v(i|S_j)}{OPT(A_1)} B \)

With constant probability

\[\frac{OPT(A)}{4} \leq OPT(A_2) \leq v(C_1) + v(C_2) + v(C_3) \]
approximation ratio

Everything is rejected because
\[c_i > 10 \frac{v(i|S_j)}{OPT(A_1)} B \]

With constant probability
\[\frac{OPT(A)}{4} \leq OPT(A_2) \leq v(C_1) + v(C_2) + v(C_3) \]

By subadditivity
approximation ratio

Everything is rejected because

$$c_i > 10 \frac{v(i | \mathcal{S}_j)}{\text{OPT}(A_1)} B$$

- \(\frac{\text{OPT}(A)}{4} \leq \text{OPT}(A_2) \leq v(C_1) + v(C_2) + v(C_3)\)
- By submodularity: \(v(C_3) \leq v(C_3 \cup \mathcal{S}_1) + v(C_3 \cup \mathcal{S}_2)\)
approximation ratio

\[\frac{\text{OPT}(A)}{4} \leq \text{OPT}(A_2) \leq v(C_1) + v(C_2) + v(C_3) \]

By submodularity: \(v(C_3) \leq v(C_3 \cup S_1) + v(C_3 \cup S_2) \)

Again by submodularity: \(v(C_3 \cup S_j) \leq v(S_j) + \frac{\text{OPT}(A)}{10} \)

Everything is rejected because

\[c_i > 10 \frac{v(i|S_j)}{\text{OPT}(A_1)} B \]
approximation ratio

Everything is rejected because
\[c_i > 10 \frac{\nu(i|S_j)}{OPT(A_1)} B \]

Putting them together:
\[\frac{OPT(A)}{20} \leq \nu(C_1) + \nu(C_2) + \nu(S_1) + \nu(S_2) \]

So, the (approximately) best solution contained in \(S_1 \) or \(S_2 \) is a constant fraction of \(OPT(A) \).
is this practical?

- A 505-approximation mechanism doesn’t seem like much...
is this practical?

- A 505-approximation mechanism doesn’t seem like much...
- Under a large market assumption, the ratio drops to \(\sim 20 \).
is this practical?

- A 505-approximation mechanism doesn’t seem like much...
- Under a large market assumption, the ratio drops to ~ 20.
- When tested on real and synthetic data, the ratio was < 2.
directions for future work

- Is it possible to design deterministic mechanisms with the same properties?

- Can we achieve approximation guarantees close to those we know for the algorithmic counterparts of these problems?

- Better for restricted families of objectives, e.g., cut functions on directed graphs?

- Are there stronger negative results? Separation of randomized and deterministic mechanisms w.r.t. the number of queries?
directions for future work

- Is it possible to design deterministic mechanisms with the same properties?

- Can we achieve approximation guarantees close to those we know for the algorithmic counterparts of these problems?

- Better for restricted families of objectives, e.g., cut functions on directed graphs?

- Are there stronger negative results? Separation of randomized and deterministic mechanisms w.r.t. the number of queries?

thank you!