
Budget-Feasible Mechanism Design for
Non-Monotone Submodular Objectives

Georgios Amanatidis

University of Essex

Guido Schäfer

Centrum Wiskunde & Informatica

Pieter Kleer

Max-Planck-Institut für Informatik

the setting

cost 𝑐1

cost 𝑐2

cost 𝑐3

value 𝑣1

value 𝑣2

value 𝑣3

Buyer with budget 𝐵
and valuation function 𝑣

the setting

cost 𝑐1

cost 𝑐2

cost 𝑐3

value 𝑣1

value 𝑣2

value 𝑣3

Models applications like:
• Influence maximization

(advertisement on social networks)
• Crowdsourcing platforms

(e.g., Amazon Mechanical Turk, ClickWorker)
• Team formation

Buyer with budget 𝐵
and valuation function 𝑣

the setting

Buyer with budget 𝐵

cost 𝑐1

cost 𝑐2

cost 𝑐3

value 𝑣1

value 𝑣2

value 𝑣3

the setting

 Set of items 𝐴 = 1, 2, … , 𝑛 .

 Each item 𝑖 comes with a cost 𝑐𝑖.

 Buyer with a budget 𝐵 and a valuation function 𝑣: 2𝐴 → ℝ.

the setting

Buyer with budget 𝐵
and an additive

valuation function

cost 𝑐1

cost 𝑐2

cost 𝑐3

value 𝑣1

value 𝑣2

value 𝑣3

Total value = 𝑣2 + 𝑣3

the setting

 Set of items 𝐴 = 1, 2, … , 𝑛 .

 Each item 𝑖 comes with a cost 𝑐𝑖.

 Buyer with a budget 𝐵 and a valuation function 𝑣: 2𝐴 → ℝ.

the setting

 Set of items 𝐴 = 1, 2, … , 𝑛 .

 Each item 𝑖 comes with a cost 𝑐𝑖.

 Buyer with a budget 𝐵 and a valuation function 𝑣: 2𝐴 → ℝ.

 When 𝑣 is additive:

 Objective: Select a set S that maximizes 𝑣 𝑆 = σ𝑖∈S 𝑣𝑖
subject to the constraint σ𝑖∈𝑆 𝑐𝑖 ≤ 𝐵.

 This is just Knapsack!

the setting

 Knapsack is an NP-hard problem.

 However, we can approximate the optimal solution within
1 + 𝜖 in polynomial time.

 Straightforward 2-approximation algorithm:

 Sort all items from higher to lower density (value / cost);

 Greedily build a feasible solution 𝑆 w.r.t. this ordering;

 Return the best among 𝑆 and the item of highest value.

𝐴𝐿𝐺 is a 𝜌-approximation algorithm if 𝜌 ⋅ 𝑣 𝐴𝐿𝐺 𝐼 ≥ 𝑣 𝑂𝑃𝑇 𝐼 for all 𝐼.

Reminder:

the setting

Buyer with budget 𝐵
and a submodular
valuation function

cost 𝑐1

cost 𝑐2

cost 𝑐3

value 𝑣1

value 𝑣2

value 𝑣3

Total value ≤ 𝑣2 + 𝑣3

the setting

 Set of items 𝐴 = 1, 2, … , 𝑛 .

 Each item 𝑖 comes with a cost 𝑐𝑖.

 Buyer with a budget 𝐵 and a valuation function 𝑣: 2𝐴 → ℝ.

 Typically, 𝑣 is submodular:

 𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆 ≥ 𝑣 𝑇 ∪ 𝑖 − 𝑣 𝑇
for any 𝑆 ⊆ 𝑇 and 𝑖 ∉ 𝑇

𝑆

𝑇

𝑖

𝑖’s marginal contribution
decreases as the set grows

the setting

 Set of items 𝐴 = 1, 2, … , 𝑛 .

 Each item 𝑖 comes with a cost 𝑐𝑖.

 Buyer with a budget 𝐵 and a valuation function 𝑣: 2𝐴 → ℝ.

 Typically, 𝑣 is submodular:

 𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆 ≥ 𝑣 𝑇 ∪ 𝑖 − 𝑣 𝑇
for any 𝑆 ⊆ 𝑇 and 𝑖 ∉ 𝑇

 Select a set S that maximizes 𝑣 𝑆 subject to σ𝑖∈𝑆 𝑐𝑖 ≤ 𝐵.

𝑆

𝑇

𝑖

𝑖’s marginal contribution
decreases as the set grows

the setting

 Set of items 𝐴 = 1, 2, … , 𝑛 .

 Each item 𝑖 comes with a cost 𝑐𝑖.

 Buyer with a budget 𝐵 and a valuation function 𝑣: 2𝐴 → ℝ.

 Typically, 𝑣 is submodular:

 𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆 ≥ 𝑣 𝑇 ∪ 𝑖 − 𝑣 𝑇
for any 𝑆 ⊆ 𝑇 and 𝑖 ∉ 𝑇

 Select a set S that maximizes 𝑣 𝑆 subject to σ𝑖∈𝑆 𝑐𝑖 ≤ 𝐵.

 Known 𝑒-approximation algorithm

𝑆

𝑇

𝑖

𝑖’s marginal contribution
decreases as the set grows

 This is still an NP-hard problem.

 Approximating the optimal solution within
𝑒

𝑒−1
in

polynomial time is the best one could hope for.

 Straightforward 3-approximation algorithm for monotone
submodular objectives:

 Sort all items from higher to lower marginal density;

 Greedily build a feasible solution 𝑆 w.r.t. this ordering;

 Return the best among 𝑆 and the item of highest value.

the setting

the setting

cost 𝑐1

cost 𝑐2

cost 𝑐3

value 𝑣1

value 𝑣2

value 𝑣3

Buyer with budget 𝐵
and a submodular
valuation function

the setting

 Set of agents 𝐴 = 1, 2,… , 𝑛 .

 Each agent 𝑖 comes with a private cost 𝑐𝑖.

 Buyer with a budget 𝐵 and a valuation function 𝑣: 2𝐴 → ℝ.

the setting

 Set of agents 𝐴 = 1, 2,… , 𝑛 .

 Each agent 𝑖 comes with a private cost 𝑐𝑖.

 Buyer with a budget 𝐵 and a valuation function 𝑣: 2𝐴 → ℝ.
Here 𝑣 is general submodular.

the setting

 Set of agents 𝐴 = 1, 2,… , 𝑛 .

 Each agent 𝑖 comes with a private cost 𝑐𝑖.

 Buyer with a budget 𝐵 and a valuation function 𝑣: 2𝐴 → ℝ.
Here 𝑣 is general submodular.

A function 𝑣: 2𝐴 → ℝ is submodular if for any 𝑆 ⊆ 𝑇 and 𝑖 ∉ 𝑇:
𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆 ≥ 𝑣 𝑇 ∪ 𝑖 − 𝑣 𝑇 .

Reminder:

the setting

 Set of agents 𝐴 = 1, 2,… , 𝑛 .

 Each agent 𝑖 comes with a private cost 𝑐𝑖.

 Buyer with a budget 𝐵 and a valuation function 𝑣: 2𝐴 → ℝ.
Here 𝑣 is general submodular.

Find a set 𝑆 that maximizes 𝑣 𝑆 , subject to σ𝑖∈𝑆 𝑐𝑖 ≤ 𝐵.

the setting

cost 𝑐1

cost 𝑐2

cost 𝑐3

value 𝑣1

value 𝑣2

value 𝑣3

Buyer with budget 𝐵
and a submodular
valuation function

the setting

cost 𝑐1

cost 𝑐2

cost 𝑐3

value 𝑣1

value 𝑣2

value 𝑣3

Buyer with budget 𝐵
and a submodular
valuation function

cost 𝑑1

cost 𝑑2

cost 𝑑3

the setting

cost 𝑐1

cost 𝑐2

cost 𝑐3

value 𝑣1

value 𝑣2

value 𝑣3

Buyer with budget 𝐵
and a submodular
valuation function

cost 𝑑1

cost 𝑑2

cost 𝑑3

the setting

cost 𝑐1

cost 𝑐2

cost 𝑐3

value 𝑣1

value 𝑣2

value 𝑣3

Buyer with budget 𝐵
and a submodular
valuation function

cost 𝑑1

cost 𝑑2

cost 𝑑3

payment 𝑝2 ≥ 𝑑2

the setting

cost 𝑐1

cost 𝑐2

cost 𝑐3

value 𝑣1

value 𝑣2

value 𝑣3

Buyer with budget 𝐵
and a submodular
valuation function

cost 𝑑1

cost 𝑑2

cost 𝑑3

payment 𝑝2 ≥ 𝑑2

the setting

 Can we ensure that the agents report the 𝑐𝑖s?

the setting

 Can we ensure that the agents report the 𝑐𝑖s?

 A truthful mechanism is an algorithm that uses payments
to ensure that no agent has an incentive to lie.

the setting

 Can we ensure that the agents report the 𝑐𝑖s?

 A truthful mechanism is an algorithm that uses payments
to ensure that no agent has an incentive to lie.

 In settings like this one, there is a unique payment scheme
that works, given that our solution is monotone (Myerson)

the setting

cost 𝑐1

cost 𝑐2

cost 𝑐3

value 𝑣1

value 𝑣2

value 𝑣3

Buyer with budget 𝐵
and a submodular
valuation function

cost 𝑐1

cost 𝑐2

cost 𝑐3

the setting

cost 𝑐1

cost 𝑐2

cost 𝑐3

value 𝑣1

value 𝑣2

value 𝑣3

Buyer with budget 𝐵
and a submodular
valuation function

cost 𝑐1

cost 𝑐2

cost 𝑐3

the setting

cost 𝑐1

cost 𝑐2

cost 𝑐3

value 𝑣1

value 𝑣2

value 𝑣3

Buyer with budget 𝐵
and a submodular
valuation function

cost 𝑐1

cost 𝑐2

cost 𝑐3

payment 𝑝2 ≥ 𝑑2

the setting

cost 𝑐1

cost 𝑐2

cost 𝑐3

value 𝑣1

value 𝑣2

value 𝑣3

Buyer with budget 𝐵
and a submodular
valuation function

cost 𝑐1

cost 𝑐2

cost 𝑐3

payment 𝑝2 ≥ 𝑐2

the setting

 Set of agents 𝐴 = 1, 2,… , 𝑛 .

 Each agent 𝑖 comes with a private cost 𝑐𝑖.

 Buyer with a budget 𝐵 and a valuation function 𝑣: 2𝐴 → ℝ.
Here 𝑣 is general submodular.

Find a set 𝑆 that maximizes 𝑣 𝑆 , subject to σ𝑖∈𝑆 𝑐𝑖 ≤ 𝐵.

Design truthful mechanisms with strong approximation
guarantees.

the setting

 Set of agents 𝐴 = 1, 2,… , 𝑛 .

 Each agent 𝑖 comes with a private cost 𝑐𝑖.

 Buyer with a budget 𝐵 and a valuation function 𝑣: 2𝐴 → ℝ.
Here 𝑣 is general submodular.

Find a set 𝑆 that maximizes 𝑣 𝑆 , subject to σ𝑖∈𝑆 𝑐𝑖 ≤ 𝐵.

Design truthful, budget-feasible mechanisms with strong
approximation guarantees.

the setting

 Set of agents 𝐴 = 1, 2,… , 𝑛 .

 Each agent 𝑖 comes with a private cost 𝑐𝑖.

 Buyer with a budget 𝐵 and a valuation function 𝑣: 2𝐴 → ℝ.
Here 𝑣 is general submodular.

Find a set 𝑆 that maximizes 𝑣 𝑆 , subject to σ𝑖∈𝑆 𝑐𝑖 ≤ 𝐵.

Design truthful, budget-feasible mechanisms with strong
approximation guarantees.

σ𝑖∈𝑆 𝑝𝑖 ≤ 𝐵

related work

 Initiated by [Singer ’10]

 Additive and monotone submodular objectives
[Singer ’10], [Chen, Gravin, Lu ’11], [Badanidiyuru, Kleinberg, Singer ’12],
[A., Birmpas, Markakis ’16], [Leonardi, Monaco, Sankowski, Zhang ’17],
[Jalaly, Tardos ’18], [Gravin ’19]

 Subadditive, XOS, and symmetric submodular objectives
[Dobzinski, Singer, Papadimitriou ’11], [Bei, Chen, Gravin, Lu ’12],
[A., Birmpas, Markakis ’17]

 For general submodular objectives an exponential-time
768-approximation mechanism is implied by [Bei et al. ’12]

budget-feasible mechanism design

 Single-parameter mechanism design problem.

 Suffices to find monotone algorithms. (Myerson’s lemma)

Myerson’s lemma

 Designing of truthful mechanisms (almost) the same as
constructing monotone allocation rules.

 We say that an outcome rule 𝑓 is monotone, if
𝑖 ∈ 𝑓 𝑏𝑖 , 𝑏−𝑖 ⇒ 𝑖 ∈ 𝑓 𝑏𝑖

′ , 𝑏−𝑖 for 𝑏𝑖
′ ≤ 𝑏𝑖

Lemma: Given a monotone algorithm 𝑓, there is a unique
payment scheme 𝑝 such that 𝑓, 𝑝 is a truthful and
individually rational mechanism.

𝑖’s bid Everyone else’s bid (vector)

budget-feasible mechanism design

 Single-parameter mechanism design problem.

 Suffices to find monotone algorithms. (Myerson’s lemma)

 Presence of budget makes the problem very challenging.

 Even exponential truthful mechanisms are not obvious.

lower bound

cost 1

cost 1

cost 1

value 10

value 4.9

value 4.9

Buyer with budget
𝐵 = 3

and an additive
valuation function

cost 1

cost 1

cost 1

lower bound

cost 1

cost 1

cost 1

value 10

value 4.9

value 4.9

Buyer with budget
𝐵 = 3

and an additive
valuation function

cost 1

cost 1

cost 1

value of optimal
solution = 19.8

lower bound

cost 1

cost 1

cost 1

value 10

value 4.9

value 4.9

Buyer with budget
𝐵 = 3

and an additive
valuation function

cost 1

cost 1

cost 1

Must be included to the
solution, or else we have an

approximation factor > 2.

How much should he get paid?

lower bound

cost 1

cost 1

cost 1

value 10

value 4.9

value 4.9

Buyer with budget
𝐵 = 3

and an additive
valuation function

cost 1

cost 1

cost 1

Must be included to the
solution, or else we have an

approximation factor > 2.

How much should he get paid?

lower bound

cost 1

cost 1

cost 1

value 10

value 4.9

value 4.9

Buyer with budget
𝐵 = 3

and an additive
valuation function

cost 3

cost 1

cost 1

Must be included to the
solution, or else we have an

approximation factor > 2.

How much should he get paid?

lower bound

cost 1

cost 1

cost 1

value 10

value 4.9

value 4.9

Buyer with budget
𝐵 = 3

and an additive
valuation function

cost 3

cost 1

cost 1

Must be included to the
solution, or else we have an

approximation factor > 2.

How much should he get paid?

lower bound

cost 1

cost 1

cost 1

value 10

value 4.9

value 4.9

Buyer with budget
𝐵 = 3

and an additive
valuation function

cost 1

cost 1

cost 1

Must be included to the
solution, or else we have an

approximation factor > 2.

How much should he get paid?

lower bound

cost 1

cost 1

cost 1

value 10

value 4.9

value 4.9

Buyer with budget
𝐵 = 3

and an additive
valuation function

cost 1

cost 1

cost 1

Must be included to the
solution, or else we have an

approximation factor > 2.

How much should he get paid?

Impossible to achieve
a factor better than 2

budget-feasible mechanism design

 Single-parameter mechanism design problem.

 Suffices to find monotone algorithms. (Myerson’s lemma)

 Presence of budget makes the problem very challenging.

 Even exponential truthful mechanisms are not obvious.

 Only widely applicable approach –even for “easier”
objectives– is using a very simple greedy subroutine.

related work – general approach

 Existing constant approximation mechanisms boil down
to the following:

Output either the best singleton or a greedy solution.

 Inspired by the 3-approximation algorithm above, the
greedy sorts the agents with respect to their marginal
value per cost ratio and selects them up to a threshold.

related work – general approach

 Existing constant approximation mechanisms boil down
to the following:

Output either the best singleton or a greedy solution.

 Inspired by the 3-approximation algorithm above, the
greedy sorts the agents with respect to their marginal
value per cost ratio and selects them up to a threshold.

 For non-monotone submodular objectives, this greedy
approach –and many reasonable variants– fails badly.

our results

Main theorem: There is a polynomial-time, universally
truthful, budget-feasible O(1)-approximation mechanism
for (non-monotone) submodular objectives in the value
query model.

our results

 A function 𝑣: 2𝐴 → ℝ is submodular if for any 𝑆 ⊆ 𝑇 and 𝑖 ∉ 𝑇:
𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆 ≥ 𝑣 𝑇 ∪ 𝑖 − 𝑣 𝑇 .

Main theorem: There is a polynomial-time, universally
truthful, budget-feasible O(1)-approximation mechanism
for (non-monotone) submodular objectives in the value
query model.

our results

 A function 𝑣: 2𝐴 → ℝ is submodular if for any 𝑆 ⊆ 𝑇 and 𝑖 ∉ 𝑇:
𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆 ≥ 𝑣 𝑇 ∪ 𝑖 − 𝑣 𝑇 .

 In the value query model, we assume oracle access to 𝑣 via
value queries, i.e., we assume the existence of a polynomial
time value oracle that returns 𝑣 𝑆 when given as input a set 𝑆.

Main theorem: There is a polynomial-time, universally
truthful, budget-feasible O(1)-approximation mechanism
for (non-monotone) submodular objectives in the value
query model.

our results

 A function 𝑣: 2𝐴 → ℝ is submodular if for any 𝑆 ⊆ 𝑇 and 𝑖 ∉ 𝑇:
𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆 ≥ 𝑣 𝑇 ∪ 𝑖 − 𝑣 𝑇 .

 In the value query model, we assume oracle access to 𝑣 via
value queries, i.e., we assume the existence of a polynomial
time value oracle that returns 𝑣 𝑆 when given as input a set 𝑆.

 A randomized mechanism is universally truthful if it is a proba-
bility distribution over deterministic truthful mechanisms.

Main theorem: There is a polynomial-time, universally
truthful, budget-feasible O(1)-approximation mechanism
for (non-monotone) submodular objectives in the value
query model.

our results

 The above result can be extended to the online (secretary)
setting where the agents arrive in a uniformly random order.

Main theorem: There is a polynomial-time, universally
truthful, budget-feasible O(1)-approximation mechanism
for (non-monotone) submodular objectives in the value
query model.

our results

 The above result can be extended to the online (secretary)
setting where the agents arrive in a uniformly random order.

 It can be also be generalized to the setting where the feasible
sets satisfy combinatorial constraints.

Main theorem: There is a polynomial-time, universally
truthful, budget-feasible O(1)-approximation mechanism
for (non-monotone) submodular objectives in the value
query model.

our results

 The above result can be extended to the online (secretary)
setting where the agents arrive in a uniformly random order.

 It can be also be generalized to the setting where the feasible
sets satisfy combinatorial constraints.

 For the broader class of general XOS objectives, exponentially
many queries are needed for any non-trivial approximation.

Main theorem: There is a polynomial-time, universally
truthful, budget-feasible O(1)-approximation mechanism
for (non-monotone) submodular objectives in the value
query model.

the mechanism

Key idea: simultaneous
threshold greedy algorithm

the core algorithmic idea

Initial set of agents 𝐴

 We randomly split 𝐴 into 𝐴1 and 𝐴2.

the core algorithmic idea

 We randomly split 𝐴 into 𝐴1 and 𝐴2.

𝐴1 𝐴2

the core algorithmic idea

 We randomly split 𝐴 into 𝐴1 and 𝐴2.

 We (approximately) solve on 𝐴1 in order to obtain a rough
estimate of the optimal solution in 𝐴2.

𝐴1 𝐴2

the core algorithmic idea

 We build two solutions 𝑆1 and 𝑆2 each with budget 𝐵 (say 𝐵1, 𝐵2).

 We iterate through the agents once. Each 𝑖 is a candidate for the
solution 𝑆𝑗 that maximizes her marginal value.

 Agent 𝑖 is added to 𝑆𝑗 if 𝑐𝑖 ≤ 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵 ≤ 𝐵𝑗

𝐴2

Marginal value

𝑣 𝑖 𝑆𝑗 = 𝑣 𝑆𝑗 ∪ 𝑖 − 𝑣 𝑆𝑗

the core algorithmic idea

 We build two solutions 𝑆1 and 𝑆2 each with budget 𝐵 (say 𝐵1, 𝐵2).

 We iterate through the agents once. Each 𝑖 is a candidate for the
solution 𝑆𝑗 that maximizes her marginal value.

 Agent 𝑖 is added to 𝑆𝑗 if 𝑐𝑖 ≤ 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵 ≤ 𝐵𝑗

𝐴2

Marginal value

𝑣 𝑖 𝑆𝑗 = 𝑣 𝑆𝑗 ∪ 𝑖 − 𝑣 𝑆𝑗

Agent 𝑖 is efficient.

the core algorithmic idea

 We build two solutions 𝑆1 and 𝑆2 each with budget 𝐵 (say 𝐵1, 𝐵2).

 We iterate through the agents once. Each 𝑖 is a candidate for the
solution 𝑆𝑗 that maximizes her marginal value.

 Agent 𝑖 is added to 𝑆𝑗 if 𝑐𝑖 ≤ 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵 ≤ 𝐵𝑗

𝐴2

Marginal value

𝑣 𝑖 𝑆𝑗 = 𝑣 𝑆𝑗 ∪ 𝑖 − 𝑣 𝑆𝑗

Enough leftover budget.

the core algorithmic idea

 We build two solutions 𝑆1 and 𝑆2 each with budget 𝐵 (say 𝐵1, 𝐵2).

 We iterate through the agents once. Each 𝑖 is a candidate for the
solution 𝑆𝑗 that maximizes her marginal value.

 Agent 𝑖 is added to 𝑆𝑗 if 𝑐𝑖 ≤ 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵 ≤ 𝐵𝑗

𝐴2

Marginal value

𝑣 𝑖 𝑆𝑗 = 𝑣 𝑆𝑗 ∪ 𝑖 − 𝑣 𝑆𝑗

Take it or leave it offer!

the core algorithmic idea

𝐴2

𝑆1

 We build two solutions 𝑆1 and 𝑆2 each with budget 𝐵 (say 𝐵1, 𝐵2).

 We iterate through the agents once. Each 𝑖 is a candidate for the
solution 𝑆𝑗 that maximizes her marginal value.

 Agent 𝑖 is added to 𝑆𝑗 if 𝑐𝑖 ≤ 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵 ≤ 𝐵𝑗

Marginal value

𝑣 𝑖 𝑆𝑗 = 𝑣 𝑆𝑗 ∪ 𝑖 − 𝑣 𝑆𝑗

the core algorithmic idea

𝐴2

𝑆1 𝑆2

 We build two solutions 𝑆1 and 𝑆2 each with budget 𝐵 (say 𝐵1, 𝐵2).

 We iterate through the agents once. Each 𝑖 is a candidate for the
solution 𝑆𝑗 that maximizes her marginal value.

 Agent 𝑖 is added to 𝑆𝑗 if 𝑐𝑖 ≤ 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵 ≤ 𝐵𝑗

Marginal value

𝑣 𝑖 𝑆𝑗 = 𝑣 𝑆𝑗 ∪ 𝑖 − 𝑣 𝑆𝑗

the core algorithmic idea

𝐴2

𝑆1 𝑆2

 We build two solutions 𝑆1 and 𝑆2 each with budget 𝐵 (say 𝐵1, 𝐵2).

 We iterate through the agents once. Each 𝑖 is a candidate for the
solution 𝑆𝑗 that maximizes her marginal value.

 Agent 𝑖 is added to 𝑆𝑗 if 𝑐𝑖 ≤ 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵 ≤ 𝐵𝑗

Marginal value

𝑣 𝑖 𝑆𝑗 = 𝑣 𝑆𝑗 ∪ 𝑖 − 𝑣 𝑆𝑗

the core algorithmic idea

𝐴2

𝑆1 𝑆2

 We build two solutions 𝑆1 and 𝑆2 each with budget 𝐵 (say 𝐵1, 𝐵2).

 We iterate through the agents once. Each 𝑖 is a candidate for the
solution 𝑆𝑗 that maximizes her marginal value.

 Agent 𝑖 is added to 𝑆𝑗 if 𝑐𝑖 ≤ 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵 ≤ 𝐵𝑗

Marginal value

𝑣 𝑖 𝑆𝑗 = 𝑣 𝑆𝑗 ∪ 𝑖 − 𝑣 𝑆𝑗

the core algorithmic idea

𝐴2

𝑆1 𝑆2

 We build two solutions 𝑆1 and 𝑆2 each with budget 𝐵 (say 𝐵1, 𝐵2).

 We iterate through the agents once. Each 𝑖 is a candidate for the
solution 𝑆𝑗 that maximizes her marginal value.

 Agent 𝑖 is added to 𝑆𝑗 if 𝑐𝑖 ≤ 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵 ≤ 𝐵𝑗

Marginal value

𝑣 𝑖 𝑆𝑗 = 𝑣 𝑆𝑗 ∪ 𝑖 − 𝑣 𝑆𝑗

the core algorithmic idea

𝐴2

𝑆1 𝑆2

 We build two solutions 𝑆1 and 𝑆2 each with budget 𝐵 (say 𝐵1, 𝐵2).

 We iterate through the agents once. Each 𝑖 is a candidate for the
solution 𝑆𝑗 that maximizes her marginal value.

 Agent 𝑖 is added to 𝑆𝑗 if 𝑐𝑖 ≤ 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵 ≤ 𝐵𝑗

Marginal value

𝑣 𝑖 𝑆𝑗 = 𝑣 𝑆𝑗 ∪ 𝑖 − 𝑣 𝑆𝑗

the core algorithmic idea

𝐴2

𝑆1 𝑆2

 We build two solutions 𝑆1 and 𝑆2 each with budget 𝐵 (say 𝐵1, 𝐵2).

 We iterate through the agents once. Each 𝑖 is a candidate for the
solution 𝑆𝑗 that maximizes her marginal value.

 Agent 𝑖 is added to 𝑆𝑗 if 𝑐𝑖 ≤ 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵 ≤ 𝐵𝑗

Marginal value

𝑣 𝑖 𝑆𝑗 = 𝑣 𝑆𝑗 ∪ 𝑖 − 𝑣 𝑆𝑗

the core algorithmic idea

𝐴2

𝑆1 𝑆2

 We build two solutions 𝑆1 and 𝑆2 each with budget 𝐵 (say 𝐵1, 𝐵2).

 We iterate through the agents once. Each 𝑖 is a candidate for the
solution 𝑆𝑗 that maximizes her marginal value.

 Agent 𝑖 is added to 𝑆𝑗 if 𝑐𝑖 ≤ 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵 ≤ 𝐵𝑗

Marginal value

𝑣 𝑖 𝑆𝑗 = 𝑣 𝑆𝑗 ∪ 𝑖 − 𝑣 𝑆𝑗

the core algorithmic idea

𝐴2

𝑆1 𝑆2

 We build two solutions 𝑆1 and 𝑆2 each with budget 𝐵 (say 𝐵1, 𝐵2).

 We iterate through the agents once. Each 𝑖 is a candidate for the
solution 𝑆𝑗 that maximizes her marginal value.

 Agent 𝑖 is added to 𝑆𝑗 if 𝑐𝑖 ≤ 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵 ≤ 𝐵𝑗

Marginal value

𝑣 𝑖 𝑆𝑗 = 𝑣 𝑆𝑗 ∪ 𝑖 − 𝑣 𝑆𝑗

Everything else
was rejected!

the core algorithmic idea

 In the end, we return the best solution contained in of 𝑆1 or 𝑆2

𝐴2

𝑆1 𝑆2

Everything else
was rejected!

the core algorithmic idea

 In the end, we return the best solution contained in of 𝑆1 or 𝑆2

 𝑝𝑖 =
10𝐵

𝑂𝑃𝑇(𝐴1)
⋅ (marginal value of 𝑖 when added)

 The residual budgets 𝐵1, 𝐵2 are defined so that both 𝑆1 and 𝑆2
end up budget-feasible.

𝐴2

𝑆1 𝑆2

Everything else
was rejected!

approximation ratio

Rejected!
𝐴2

𝑆1 𝑆2

𝐴2

approximation ratio

Rejected because

𝑐𝑖 > 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵 𝑆1 𝑆2

Rejected because

10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵 > 𝐵𝑗

approximation ratio

Rejected because

𝑐𝑖 > 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵

Rejected because

10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵 > 𝐵𝑗
𝐴2

𝑆1 𝑆2

 If the purple part is non-empty then at some point we have
spent most of the budget of 𝑆1 or 𝑆2.

approximation ratio

Rejected because

𝑐𝑖 > 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵

Rejected because

10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵 > 𝐵𝑗
𝐴2

𝑆1 𝑆2

 If the purple part is non-empty then at some point we have
spent most of the budget of 𝑆1 or 𝑆2.

 Since we spend at a rate ≈
10𝐵

𝑂𝑃𝑇 𝐴1
≤

40𝐵

𝑂𝑃𝑇 𝐴
, this means we

bought value ≥
𝑂𝑃𝑇(𝐴)

40
.

With constant probability

approximation ratio

Suppose everything
is rejected because

𝑐𝑖 > 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵

𝐴2

𝑆1 𝑆2

approximation ratio

Suppose everything
is rejected because

𝑐𝑖 > 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵

𝐴2

𝑆1 𝑆2

𝑂𝑃𝑇 𝐴2

approximation ratio

Suppose everything
is rejected because

𝑐𝑖 > 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵

𝐴2

𝑆1 𝑆2

𝑂𝑃𝑇 𝐴2

𝐶1 𝐶2𝐶3

approximation ratio

Everything is
rejected because

𝑐𝑖 > 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵

𝐴2

𝑆1 𝑆2

𝑂𝑃𝑇 𝐴2

𝐶1 𝐶2𝐶3


𝑂𝑃𝑇(𝐴)

4
≤ 𝑂𝑃𝑇 𝐴2 ≤ 𝑣 𝐶1 + 𝑣 𝐶2 + 𝑣 𝐶3

approximation ratio

Everything is
rejected because

𝑐𝑖 > 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵

𝐴2

𝑆1 𝑆2

𝑂𝑃𝑇 𝐴2

𝐶1 𝐶2𝐶3


𝑂𝑃𝑇(𝐴)

4
≤ 𝑂𝑃𝑇 𝐴2 ≤ 𝑣 𝐶1 + 𝑣 𝐶2 + 𝑣 𝐶3

With constant
probability

approximation ratio

Everything is
rejected because

𝑐𝑖 > 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵

𝐴2

𝑆1 𝑆2

𝑂𝑃𝑇 𝐴2

𝐶1 𝐶2𝐶3


𝑂𝑃𝑇(𝐴)

4
≤ 𝑂𝑃𝑇 𝐴2 ≤ 𝑣 𝐶1 + 𝑣 𝐶2 + 𝑣 𝐶3

With constant
probability

By subadditivity

approximation ratio

Everything is
rejected because

𝑐𝑖 > 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵

𝐴2

𝑆1 𝑆2

𝑂𝑃𝑇 𝐴2

𝐶1 𝐶2𝐶3


𝑂𝑃𝑇(𝐴)

4
≤ 𝑂𝑃𝑇 𝐴2 ≤ 𝑣 𝐶1 + 𝑣 𝐶2 + 𝑣 𝐶3

 By submodularity: 𝑣 𝐶3 ≤ 𝑣(𝐶3 ∪ 𝑆1) + 𝑣(𝐶3 ∪ 𝑆2)

approximation ratio

Everything is
rejected because

𝑐𝑖 > 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵

𝐴2

𝑆1 𝑆2

𝑂𝑃𝑇 𝐴2

𝐶1 𝐶2𝐶3


𝑂𝑃𝑇(𝐴)

4
≤ 𝑂𝑃𝑇 𝐴2 ≤ 𝑣 𝐶1 + 𝑣 𝐶2 + 𝑣 𝐶3

 By submodularity: 𝑣 𝐶3 ≤ 𝑣 𝐶3 ∪ 𝑆1 + 𝑣 𝐶3 ∪ 𝑆2

 Again by submodularity: 𝑣 𝐶3 ∪ 𝑆𝑗 ≤ 𝑣 𝑆𝑗 +
𝑂𝑃𝑇(𝐴)

10

approximation ratio

Everything is
rejected because

𝑐𝑖 > 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵

𝐴2

𝑆1 𝑆2

𝑂𝑃𝑇 𝐴2

𝐶1 𝐶2𝐶3

 Putting them together:
𝑂𝑃𝑇(𝐴)

20
≤ 𝑣 𝐶1 + 𝑣 𝐶2 + 𝑣 𝑆1 + 𝑣 𝑆2

 So, the (approximately) best solution contained in 𝑆1 or 𝑆2 is a
constant fraction of 𝑂𝑃𝑇 𝐴 .

is this practical?

 A 505-approximation mechanism doesn’t seem like much…

is this practical?

 A 505-approximation mechanism doesn’t seem like much…

 Under a large market assumption, the ratio drops to ~20.

is this practical?

 A 505-approximation mechanism doesn’t seem like much…

 Under a large market assumption, the ratio drops to ~20.

 When tested on real and synthetic data, the ratio was < 2.

directions for future work

o Is it possible to design deterministic mechanisms with the
same properties?

o Can we achieve approximation guarantees close to those we
know for the algorithmic counterparts of these problems?

o Better for restricted families of objectives, e.g., cut functions
on directed graphs?

o Are there stronger negative results? Separation of
randomized and deterministic mechanisms w.r.t. the number
of queries?

directions for future work

o Is it possible to design deterministic mechanisms with the
same properties?

o Can we achieve approximation guarantees close to those we
know for the algorithmic counterparts of these problems?

o Better for restricted families of objectives, e.g., cut functions
on directed graphs?

o Are there stronger negative results? Separation of
randomized and deterministic mechanisms w.r.t. the number
of queries?

thank you!

