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Models applications like:
• Influence maximization 

(advertisement on social networks)
• Crowdsourcing platforms

(e.g., Amazon Mechanical Turk, ClickWorker)
• Team formation
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the setting

 Set of items 𝐴 = 1, 2, … , 𝑛 .

 Each item 𝑖 comes with a cost 𝑐𝑖.

 Buyer with a budget 𝐵 and a valuation function 𝑣: 2𝐴 → ℝ.

 When 𝑣 is additive:

 Objective: Select a set S that maximizes 𝑣 𝑆 = σ𝑖∈S 𝑣𝑖
subject to the constraint σ𝑖∈𝑆 𝑐𝑖 ≤ 𝐵. 

 This is just Knapsack!



the setting

 Knapsack is an NP-hard problem.

 However, we can approximate the optimal solution within 
1 + 𝜖 in polynomial time.

 Straightforward 2-approximation algorithm:

 Sort all items from higher to lower density (value / cost);

 Greedily build a feasible solution 𝑆 w.r.t. this ordering;

 Return the best among 𝑆 and the item of highest value.

𝐴𝐿𝐺 is a 𝜌-approximation algorithm if 𝜌 ⋅ 𝑣 𝐴𝐿𝐺 𝐼 ≥ 𝑣 𝑂𝑃𝑇 𝐼 for all 𝐼.

Reminder:
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 Buyer with a budget 𝐵 and a valuation function 𝑣: 2𝐴 → ℝ.

 Typically, 𝑣 is submodular:

 𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆 ≥ 𝑣 𝑇 ∪ 𝑖 − 𝑣 𝑇
for any 𝑆 ⊆ 𝑇 and 𝑖 ∉ 𝑇

𝑆

𝑇

𝑖

𝑖’s marginal contribution
decreases as the set grows
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 Set of items 𝐴 = 1, 2, … , 𝑛 .

 Each item 𝑖 comes with a cost 𝑐𝑖.

 Buyer with a budget 𝐵 and a valuation function 𝑣: 2𝐴 → ℝ.

 Typically, 𝑣 is submodular:

 𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆 ≥ 𝑣 𝑇 ∪ 𝑖 − 𝑣 𝑇
for any 𝑆 ⊆ 𝑇 and 𝑖 ∉ 𝑇

 Select a set S that maximizes 𝑣 𝑆 subject to σ𝑖∈𝑆 𝑐𝑖 ≤ 𝐵. 

 Known 𝑒-approximation algorithm

𝑆

𝑇

𝑖

𝑖’s marginal contribution
decreases as the set grows



 This is still an NP-hard problem.

 Approximating the optimal solution within 
𝑒

𝑒−1
in 

polynomial time is the best one could hope for.

 Straightforward 3-approximation algorithm for monotone
submodular objectives:

 Sort all items from higher to lower marginal density;

 Greedily build a feasible solution 𝑆 w.r.t. this ordering;

 Return the best among 𝑆 and the item of highest value.

the setting
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 Buyer with a budget 𝐵 and a valuation function 𝑣: 2𝐴 → ℝ.
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 Set of agents 𝐴 = 1, 2,… , 𝑛 .

 Each agent 𝑖 comes with a private cost 𝑐𝑖.

 Buyer with a budget 𝐵 and a valuation function 𝑣: 2𝐴 → ℝ.
Here 𝑣 is general submodular.

A function 𝑣: 2𝐴 → ℝ is submodular if for any 𝑆 ⊆ 𝑇 and 𝑖 ∉ 𝑇:
𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆 ≥ 𝑣 𝑇 ∪ 𝑖 − 𝑣 𝑇 .

Reminder:
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 Set of agents 𝐴 = 1, 2,… , 𝑛 .

 Each agent 𝑖 comes with a private cost 𝑐𝑖.

 Buyer with a budget 𝐵 and a valuation function 𝑣: 2𝐴 → ℝ.
Here 𝑣 is general submodular.

Find a set 𝑆 that maximizes 𝑣 𝑆 , subject to σ𝑖∈𝑆 𝑐𝑖 ≤ 𝐵.
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 A truthful mechanism is an algorithm that uses payments 
to ensure that no agent has an incentive to lie.



the setting

 Can we ensure that the agents report the 𝑐𝑖s?

 A truthful mechanism is an algorithm that uses payments 
to ensure that no agent has an incentive to lie.

 In settings like this one, there is a unique payment scheme
that works, given that our solution is monotone (Myerson)
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Design truthful mechanisms with strong approximation 
guarantees.
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the setting

 Set of agents 𝐴 = 1, 2,… , 𝑛 .

 Each agent 𝑖 comes with a private cost 𝑐𝑖.

 Buyer with a budget 𝐵 and a valuation function 𝑣: 2𝐴 → ℝ.
Here 𝑣 is general submodular.

Find a set 𝑆 that maximizes 𝑣 𝑆 , subject to σ𝑖∈𝑆 𝑐𝑖 ≤ 𝐵.

Design truthful, budget-feasible mechanisms with strong 
approximation guarantees.

σ𝑖∈𝑆 𝑝𝑖 ≤ 𝐵



related work

 Initiated by [Singer ’10]

 Additive and monotone submodular objectives
[Singer ’10], [Chen, Gravin, Lu ’11], [Badanidiyuru, Kleinberg, Singer ’12], 
[A., Birmpas, Markakis ’16], [Leonardi, Monaco, Sankowski, Zhang ’17], 
[Jalaly, Tardos ’18], [Gravin ’19]

 Subadditive, XOS, and symmetric submodular objectives
[Dobzinski, Singer, Papadimitriou ’11], [Bei, Chen, Gravin, Lu  ’12], 
[A., Birmpas, Markakis ’17]

 For general submodular objectives an exponential-time
768-approximation mechanism is implied by [Bei et al. ’12]



budget-feasible mechanism design

 Single-parameter mechanism design problem.

 Suffices to find monotone algorithms. (Myerson’s lemma)



Myerson’s lemma

 Designing of truthful mechanisms (almost) the same as 
constructing monotone allocation rules.

 We say that an outcome rule 𝑓 is monotone, if 
𝑖 ∈ 𝑓 𝑏𝑖 , 𝑏−𝑖 ⇒ 𝑖 ∈ 𝑓 𝑏𝑖

′ , 𝑏−𝑖 for 𝑏𝑖
′ ≤ 𝑏𝑖

Lemma: Given a monotone algorithm 𝑓, there is a unique 
payment scheme 𝑝 such that 𝑓, 𝑝 is a truthful and 
individually rational mechanism.

𝑖’s bid Everyone else’s bid (vector)



budget-feasible mechanism design

 Single-parameter mechanism design problem.

 Suffices to find monotone algorithms. (Myerson’s lemma)

 Presence of budget makes the problem very challenging.

 Even exponential truthful mechanisms are not obvious.
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𝐵 = 3

and an additive
valuation function

cost 1

cost 1

cost 1

Must be included to the 
solution, or else we have an 

approximation factor > 2. 

How much should he get paid?

Impossible to achieve 
a factor better than 2



budget-feasible mechanism design

 Single-parameter mechanism design problem.

 Suffices to find monotone algorithms. (Myerson’s lemma)

 Presence of budget makes the problem very challenging.

 Even exponential truthful mechanisms are not obvious.

 Only widely applicable approach –even for “easier” 
objectives– is using a very simple greedy subroutine.



related work – general approach

 Existing constant approximation mechanisms boil down 
to the following:

Output either the best singleton or a greedy solution.

 Inspired by the 3-approximation algorithm above, the 
greedy sorts the agents with respect to their marginal 
value per cost ratio and selects them up to a threshold. 



related work – general approach

 Existing constant approximation mechanisms boil down 
to the following:

Output either the best singleton or a greedy solution.

 Inspired by the 3-approximation algorithm above, the 
greedy sorts the agents with respect to their marginal 
value per cost ratio and selects them up to a threshold. 

 For non-monotone submodular objectives, this greedy 
approach –and many reasonable variants– fails badly.



our results

Main theorem: There is a polynomial-time, universally 
truthful, budget-feasible O(1)-approximation mechanism 
for (non-monotone) submodular objectives in the value 
query model.
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𝑣 𝑆 ∪ 𝑖 − 𝑣 𝑆 ≥ 𝑣 𝑇 ∪ 𝑖 − 𝑣 𝑇 .

 In the value query model, we assume oracle access to 𝑣 via 
value queries, i.e., we assume the existence of a polynomial 
time value oracle that returns 𝑣 𝑆 when given as input a set 𝑆.

 A randomized mechanism is universally truthful if it is a proba-
bility distribution over deterministic truthful mechanisms.

Main theorem: There is a polynomial-time, universally 
truthful, budget-feasible O(1)-approximation mechanism 
for (non-monotone) submodular objectives in the value 
query model.
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our results

 The above result can be extended to the online (secretary) 
setting where the agents arrive in a uniformly random order.

 It can be also be generalized to the setting where the feasible 
sets satisfy combinatorial constraints.

 For the broader class of general XOS objectives, exponentially 
many queries are needed for any non-trivial approximation.

Main theorem: There is a polynomial-time, universally 
truthful, budget-feasible O(1)-approximation mechanism 
for (non-monotone) submodular objectives in the value 
query model.



the mechanism

Key idea: simultaneous 
threshold greedy algorithm
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the core algorithmic idea

 We randomly split 𝐴 into 𝐴1 and 𝐴2.

 We (approximately) solve on 𝐴1 in order to obtain a rough 
estimate of the optimal solution in 𝐴2. 

𝐴1 𝐴2



the core algorithmic idea

 We build two solutions 𝑆1 and 𝑆2 each with budget 𝐵 (say 𝐵1, 𝐵2).

 We iterate through the agents once. Each 𝑖 is a candidate for the 
solution 𝑆𝑗 that maximizes her marginal value.

 Agent 𝑖 is added to 𝑆𝑗 if 𝑐𝑖 ≤ 10
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𝐴2

Marginal value

𝑣 𝑖 𝑆𝑗 = 𝑣 𝑆𝑗 ∪ 𝑖 − 𝑣 𝑆𝑗



the core algorithmic idea

 We build two solutions 𝑆1 and 𝑆2 each with budget 𝐵 (say 𝐵1, 𝐵2).

 We iterate through the agents once. Each 𝑖 is a candidate for the 
solution 𝑆𝑗 that maximizes her marginal value.

 Agent 𝑖 is added to 𝑆𝑗 if 𝑐𝑖 ≤ 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵 ≤ 𝐵𝑗

𝐴2

Marginal value

𝑣 𝑖 𝑆𝑗 = 𝑣 𝑆𝑗 ∪ 𝑖 − 𝑣 𝑆𝑗

Agent 𝑖 is efficient.
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 We build two solutions 𝑆1 and 𝑆2 each with budget 𝐵 (say 𝐵1, 𝐵2).

 We iterate through the agents once. Each 𝑖 is a candidate for the 
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Marginal value
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Enough leftover budget.
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the core algorithmic idea

 In the end, we return the best solution contained in of 𝑆1 or 𝑆2

 𝑝𝑖 =
10𝐵

𝑂𝑃𝑇(𝐴1)
⋅ (marginal value of 𝑖 when added)

 The residual budgets 𝐵1, 𝐵2 are defined so that both 𝑆1 and 𝑆2
end up budget-feasible.
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𝑆1 𝑆2

 If the purple part is non-empty then at some point we have 
spent most of the budget of 𝑆1 or 𝑆2.

 Since we spend at a rate ≈
10𝐵

𝑂𝑃𝑇 𝐴1
≤

40𝐵

𝑂𝑃𝑇 𝐴
, this means we 

bought value ≥
𝑂𝑃𝑇(𝐴)

40
.

With constant probability
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Everything is 
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𝐵

𝐴2
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𝑂𝑃𝑇 𝐴2

𝐶1 𝐶2𝐶3


𝑂𝑃𝑇(𝐴)

4
≤ 𝑂𝑃𝑇 𝐴2 ≤ 𝑣 𝐶1 + 𝑣 𝐶2 + 𝑣 𝐶3

With constant 
probability

By subadditivity
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Everything is 
rejected because 

𝑐𝑖 > 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵

𝐴2

𝑆1 𝑆2

𝑂𝑃𝑇 𝐴2

𝐶1 𝐶2𝐶3


𝑂𝑃𝑇(𝐴)

4
≤ 𝑂𝑃𝑇 𝐴2 ≤ 𝑣 𝐶1 + 𝑣 𝐶2 + 𝑣 𝐶3

 By submodularity:  𝑣 𝐶3 ≤ 𝑣 𝐶3 ∪ 𝑆1 + 𝑣 𝐶3 ∪ 𝑆2

 Again by submodularity: 𝑣 𝐶3 ∪ 𝑆𝑗 ≤ 𝑣 𝑆𝑗 +
𝑂𝑃𝑇(𝐴)

10



approximation ratio

Everything is 
rejected because 

𝑐𝑖 > 10
𝑣 𝑖 𝑆𝑗
𝑂𝑃𝑇 𝐴1

𝐵

𝐴2

𝑆1 𝑆2

𝑂𝑃𝑇 𝐴2

𝐶1 𝐶2𝐶3

 Putting them together:
𝑂𝑃𝑇(𝐴)

20
≤ 𝑣 𝐶1 + 𝑣 𝐶2 + 𝑣 𝑆1 + 𝑣 𝑆2

 So, the (approximately) best solution contained in 𝑆1 or 𝑆2 is a 
constant fraction of 𝑂𝑃𝑇 𝐴 .



is this practical? 

 A 505-approximation mechanism doesn’t seem like much…
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 Under a large market assumption, the ratio drops to ~20.



is this practical? 

 A 505-approximation mechanism doesn’t seem like much…

 Under a large market assumption, the ratio drops to ~20.

 When tested on real and synthetic data, the ratio was < 2.



directions for future work

o Is it possible to design deterministic mechanisms with the 
same properties?

o Can we achieve approximation guarantees close to those we 
know for the algorithmic counterparts of these problems?

o Better for restricted families of objectives, e.g., cut functions 
on directed graphs?

o Are there stronger negative results? Separation of 
randomized and deterministic mechanisms w.r.t. the number 
of queries?
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thank you!


