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Motivation: Electric vehicle charging

@ How will the mass adoption of electric vehicles
change the demand for electricity?

@ Can controlling charging avoid the need to
increase power generation capacity?

@ Is there a practical way in which this can be
achieved?

@ How will renewable resources may be taken into
account?
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Motivation
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@ Green car revolution — means to address the energy trilema

o Green, cost efficient, reliable
e Vebhicles act like virtual storage devices

o Not only they store but also defer their consumption in time

@ In the UK: 3,500 in 2013, more than 90,000 today and the numbers
keep increasing!
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Motivation

e Rapid increase in the adoption of electric vehicles (EVs) in the UK

o UK commitment to reduce emissions by 80% by 2050
o Decreasing price of lithium ion batteries

Cumulative year-on-year electric vehicle registrations (UK) 20122017 greencar
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@ Power consumption of various household appliances

Appliance Power Consumption (W)
Washing Machine 700
Kettle 1800
Refrigerator 35
LCD TV 115
EV Charger 3500
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Motivation

Peak Clipping Valley Filling

o Electric vehicles offer

e Peak clipping, i.e. reduce peak demand by discharging at peak time
instances (like storage)

o Valley filling, i.e. charge when electricity price is lower
= cost savings
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Electric vehicle charging control

Q"*ﬂ price broadcast
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© Aggregator / central authority sends a price incentive to vehicles
price = p(xl + ... —i—xm)

ZP(ZXf),

1

where x; is the consumption level of each vehicle / agent
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Electric vehicle charging control
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© Aggregator / central authority sends a price incentive to vehicles

price = p(xl + ... —|—xm)

:p(le->,

1

where x; is the consumption level of each vehicle / agent
@ Agents solve some local problem and broadcast an update x;
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Electric vehicle charging control

2 price broadcast
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© Aggregator / central authority sends a price incentive to vehicles

price = p(xl + ... —|—xm)

:p(le->,

1

where x; is the consumption level of each vehicle / agent
@ Agents solve some local problem and broadcast an update x;
© A new price is calculated and process is repeated
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Challenges
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@ Vehicles act as non-cooperative entities = multi-agent game

e What happens if price is uncertain? = price volatility

@ Data driven Nash equilibrium computation
= Equilibria become random variables

@ Nash equilibrium efficiency
= How far from the social welfare optimum?

Technical University of Crete Nash Equilibrium Learning February 7, 2021

8/36



Data driven Nash equilibrium computation
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Non-cooperative game
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Agents’ description
Cost function: Zx,t X pt(ijt> [quantity X price]
J

Constraints: int =E;, [prescribed charging levell

Xit € [Xj, Xit], forall t  [consumption limits]
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Non-cooperative game

@ Agents are selfish, non-cooperative entities

@ Interested in minimizing some cost when other agents’ strategies are

fixed

@ Price is subject to volatility = Represent uncertainty by means of
scenarios!
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Non-cooperative game

@ Agents are selfish, non-cooperative entities

@ Interested in minimizing some cost when other agents’ strategies are

fixed
Ji(xi, x—j) = fi(xi, x_i) + k:r?ffMg(Xthiaek)

@ Price is subject to volatility = Represent uncertainty by means of
scenarios!

Nash equilibrium

A set of agents' strategies (x;, X_;) forms a Nash equilibrium if for all i
Ji()?i,)_(,,') < J,'(X,',)_(,,'), for all x; € Xi,

where X; is agent's i local constraint set.
No agent can improve her cost when other agents’ strategies are fixed
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Non-cooperative game

@ Nash equilibrium X is a random variable

@ How likely is it to remain unchanged when a new uncertainty

realization is encounter

ed?

W{el,...,eM: P{s: x:x+}>1fs}z1—f3

° Probably approximately correct Nash equilibrium Iearning
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Non-cooperative game

correct Nash equilibrium learning

Fix 5 € (0,1), and consider the function ¢(-) such that

_1andz< - s

We then have P’V’{Hl,...,HM L P{o: x=xt}>1 —e(d)} >1- 3,

where d : sample compression, i.e., Xg = Xu.
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. sketch of the proof

O Agents’ problem reformulation
@ Nash equilibria as solutions of variational inequalities (VIs)

© Using the “scenario approach”
a la Campi, Calafiore, Garatti, Prandini, ...
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Sketch of the proof

STEP 1:

Epigraphic reformulation for agent i

minimize fi(x;,X_;) +
subject to x; € X;
g(xi, X—j,0k) <~y for all k

STEP 2:
@ Equilibria can be characterized as solutions to Vls

@ By VI sensitivity: constraint satisfaction implies equilibrium
insensitivity

if P{0: g(x,0) <7} >1—¢(d)
.. then P{: x=%xT} >1—¢(d)
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Sketch of the proof (cont'd)

STEP 3:

Data based program Robust program

minimize f;(x;, X_;)
subject to
x; € X;

+7

g(xi, X_i,0k) < v, Vk

minimize f;(xj,X_;) +

subject to

Xit € X,'
g(xi,%1,0) < 7,V0 € ©

@ What happens for a new 6 < Is x feasible for the robust program?

@ Is this true for any 61,...,07?
hd e © ® o0 © [ /3
° °® . hd ° (34
e o . .
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Sketch of the proof (cont'd)

STEP 3:

Data based program Robust program

minimize f;(xj,X_;) + 7y

subject to

X € X,'
g(xi, X_i,0k) < v, Vk

minimize f;(xj,X_;) +
subject to
x;i € X;

g(xi, %-i,0) < 7,70 € ©

@ What happens for a new 6 < Is x feasible for the robust program?

@ Is this true for any 61,...,07?
° - % ® ee % "o ® .: y
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Sketch of the proof (cont'd)

Data based program Robust program

minimize f;(x;, X_;) + v

subject to — (x,7%)
X; € X;
g(xi, x_i,0k) <,k

minimize fi(x;,X_;) +
subject to

X; € X;

g(xi, x-i,0) <~,V0 € ©

Feasibility link [Campi & Garatti, 2008] and [KM, Prandini & Lygeros, 2015]

Fix 5 € (0,1). With confidence > 1 — /3, X is feasible for the robust
program with probability > 1 — ¢(d), i.e.

]P’(H o g(xi,x21,0) < "y) > 1 — ¢(d) with prob. > 1 -5
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Sketch of the proof (cont'd)

Feasibility link

Fix 5 € (0,1). With confidence > 1 — /3, X is feasible for the robust
program with probability > 1 — ¢(d), i.e.

]P’(Q o g(xi,x21,0) < f_y) > 1 — ¢(d) with prob. > 1 -5

@ On which parameters does ¢ depends on?

)=1and Z( )1—€ (kNWM=-*k=p

for k=d: e(d m—(d—kln—)
(@)~ 4 (d+in
e Logarithmic in 8: 1 — 3 can be set close to one
o Linear in M~1: The more data the better the result
e Linear in d: cardinality of sample compression
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Sketch of the proof (cont'd)

Cardinality of sample compression d

@ For convex agents' objective functions and constraint sets

d < # decision variables = # agents x # time-steps

xr2 optimization
direction

T
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Non-cooperative game — the convex case

correct Nash equilibrium learning

Fix 5 € (0,1), and consider the function ¢(-) such that

) =1 and Z( ) (1 (k)M =

We then have PM{Ql,...,HM : }P{H: >'<:>'<+} >1 —e(d)} >1-58
where d = # agents x # time-steps.
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Simulation results

@ Agents’ cost function
fi(xix-i) + max g(xi, x-i, 0k)
= x;' (Ago(x) + bo) + max o(x) " (Ao (x) + by)
where

o Aj: diagonal with entries from log-normal distribution
e by: entries from uniform distribution

@ Agents’ constraint set
Xi={xi: int = Ei, xit € [xj,Xi], Vt}
t
i.e., energy and charge rate limits
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Simulation results

@ Probability of Nash equilibrium alterlng (constraint violation)

Empirical [%]
Theoretical [%]

0.98
8.06

1.09
9.76

1.26
10.55

1.33
12.06

e Valley filling behaviour: Charging when price is low
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Nash equilibrium efficiency

Technical University of Crete Nash Equilibrium Learning February 7, 2021 24 /36



Nash equilibrium efficiency

Recall the Nash equilibrium definition

A vector of vehicles' charging strategies is a Nash equilibrium if

J,'()_<,',)_<_,') < J,'(X,',)_<_,') for all x; € X;

Assumptions

@ For simplicity assume J; = g, i.e., common across agents

@ Price is deterministic and affine in aggregate demand

How far are Nash equilibria from social welfare optima?
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Nash equilibria as social optima

@ Denote the objective function of vehicle i by
g(xi,x_j) = Z Xit (Pt Z Xjt + thit>
t ji
@ For each /, consider the penalty term

8a(xi) = Y pe(xit)?

Nash equilibrium as social optimum

The optimal solution of

minimize Zg(Xi,X—i)WLga(Xi)

1

subject to: x; € X; for all j

is a Nash equilibrium of the multi-vehicle game
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Nash equilibria as social optima

Nash equilibrium

The optimal solution of

minimize ) _ g(xi, x-) + ga(x))

1

subject to: x; € X; for all /

is a Nash equilibrium of the multi-vehicle game.

@ The penalty term makes the optimization program strictly convex

@ It admits a unique minimizer = unique Nash equilibrium.
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Social optima vs Nash equilibria

Social optimum Nash equilibrium

minimize Zg(x,-,x_,-) minimize Zg(x,-,x_,-)—i—ga(x,-)
i i

subject to: x; € X; for all J subject to: x; € X; for all /

@ Both of them are obtained as solutions to optimization programs

@ Nash equilibrium is optimum for the a problem which trades between
total cost and penalty term

@ Penalty term acts like variance
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Simulation results

e “Valley filling" property for both cases

o Albeit different solutions; is this always the case? (see vistas)
e Nash equilibrium # social optimum
o Nash equilibrium = social optimum (of another problem)

Case study for 5 vehicles

Normalized consumption
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From non-cooperative to cooperative ...

@ What if vehicles were “anarchists”, interested in individual objectives?
@ What is the “price of anarchy!, i.e

relative difference between social welfare optimum and Nash value?
@ One can't do much ... but if it is many of them

Koutsoupias & Papadimitriou, 1999
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From non-cooperative to cooperative ...

Social optimum x* Nash equilibrium x*

minimize Zg(x,-,x_,-) minimize Zg(x,-,x_,-)—i—ga(x,-)
i i

subject to: x; € X; for all i subject to: x; € X; for all i

@ Let's compare the optimal values
I =g, x5)
i
IM() =gt Xy
i
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From non-cooperative to cooperative ...

Vehicles are heterogeneous, and heterogeneity is modelled assuming certain
parameters in their constraints are randomly chosen from some distribution

Price of anarchy

@ As the population size m grows, the social optimum tends to the value
of the game, i.e.

lim S =

m—00 Jm(X*) o

for almost all realizations of the (random) heterogeneity parameters.
@ Price of anarchy tends to zero!

@ Vehicles tend to cooperate even though they are selfish individuals
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Price of anarchy

e “Valley filling" property for both cases
@ Nash equilibrium # social optimum. Is this always the case?

@ Not as m increases ... they tend to coincide

Case study for m =5 and m = 100 vehicles
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Summary

@ Data driven Nash equilibrium computation

o Probabilistic equilibrium sensitivity

e A priori robustness certificates

@ Nash equilibrium efficiency

o How far are Nash equilibria from social optima?
o Price of anarchy characterization

@ Other results — future work

o Decentralized equilibrium computation via best response algorithms

e A posteriori robustness certificates
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Thank you for your attention!
Questions?

Contact at:
kostas.margellos@eng.ox.ac.uk
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