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Motivation: Electric vehicle charging

How will the mass adoption of electric vehicles
change the demand for electricity?

Can controlling charging avoid the need to
increase power generation capacity?

Is there a practical way in which this can be
achieved?

How will renewable resources may be taken into
account?
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Motivation

Green car revolution – means to address the energy trilema

Green, cost efficient, reliable
Vehicles act like virtual storage devices
Not only they store but also defer their consumption in time

In the UK: 3,500 in 2013, more than 90,000 today and the numbers
keep increasing!
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Motivation

Rapid increase in the adoption of electric vehicles (EVs) in the UK
UK commitment to reduce emissions by 80% by 2050
Decreasing price of lithium ion batteries

Power consumption of various household appliances
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Motivation

Electric vehicles offer

Peak clipping, i.e. reduce peak demand by discharging at peak time
instances (like storage)

Valley filling, i.e. charge when electricity price is lower
⇒ cost savings
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Electric vehicle charging control

price broadcast

1 Aggregator / central authority sends a price incentive to vehicles

price = p
(
x1 + . . .+ xm

)

= p
(∑

i

xi

)
,

where xi is the consumption level of each vehicle / agent

2 Agents solve some local problem and broadcast an update xi
3 A new price is calculated and process is repeated
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Challenges

price broadcast

electric vehicle 
tentative action

Vehicles act as non-cooperative entities ⇒ multi-agent game

What happens if price is uncertain? ⇒ price volatility

1 Data driven Nash equilibrium computation
⇒ Equilibria become random variables

2 Nash equilibrium efficiency
⇒ How far from the social welfare optimum?
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Data driven Nash equilibrium computation
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Non-cooperative game

price broadcast

electric vehicle 
tentative action

Agents’ description

Cost function:
∑

t

xit × pt
(∑

j

xjt

)
[quantity × price]

Constraints:
∑

t

xit = Ei , [prescribed charging level]

xit ∈ [x it , x it ], for all t [consumption limits]
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Non-cooperative game

Agents are selfish, non-cooperative entities

Interested in minimizing some cost when other agents’ strategies are
fixed

Ji (xi , x−i ) = fi (xi , x−i ) + max
k=1,...,M

g(xi , x−i , θk)

Price is subject to volatility ⇒ Represent uncertainty by means of
scenarios!

???

• Uncertainty on 
electricity price

• Historical data 
available
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Non-cooperative game

Agents are selfish, non-cooperative entities

Interested in minimizing some cost when other agents’ strategies are
fixed

Ji (xi , x−i ) = fi (xi , x−i ) + max
k=1,...,M

g(xi , x−i , θk)

Price is subject to volatility ⇒ Represent uncertainty by means of
scenarios!

Nash equilibrium
A set of agents’ strategies (x̄i , x̄−i ) forms a Nash equilibrium if for all i

Ji (x̄i , x̄−i ) ≤ Ji (xi , x̄−i ), for all xi ∈ Xi ,

where Xi is agent’s i local constraint set.
No agent can improve her cost when other agents’ strategies are fixed
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Non-cooperative game

Nash equilibrium x̄ is a random variable

How likely is it to remain unchanged when a new uncertainty
realization is encountered?

PM
{
θ1, . . . , θM : P

{
δ : x̄ = x̄+

}
> 1− ε

}
≥ 1− β

Probably approximately correct Nash equilibrium learning

Technical University of Crete Nash Equilibrium Learning February 7, 2021 13 / 36



Non-cooperative game

Probably approximately correct Nash equilibrium learning
Fix β ∈ (0, 1), and consider the function ε(·) such that

ε(M) = 1 and
M−1∑

k=0

(
M

k

)
(1− ε(k))M−k = β

We then have PM
{
θ1, . . . , θM : P

{
θ : x̄ = x̄+

}
> 1− ε(d)

}
≥ 1− β,

where d : sample compression, i.e., x̄d = x̄M .
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... sketch of the proof

1 Agents’ problem reformulation

2 Nash equilibria as solutions of variational inequalities (VIs)

3 Using the “scenario approach”
a la Campi, Calafiore, Garatti, Prandini, ...
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Sketch of the proof

STEP 1:

Epigraphic reformulation for agent i

minimize fi (xi , x̄−i ) + γ

subject to xi ∈ Xi

g(xi , x̄−i , θk) ≤ γ for all k

STEP 2:
Equilibria can be characterized as solutions to VIs

By VI sensitivity: constraint satisfaction implies equilibrium
insensitivity

if P
{
θ : g(x̄ , θ) ≤ γ̄

}
≥ 1− ε(d̄)

... then P
{
θ : x̄ = x̄+

}
≥ 1− ε(d̄)

Technical University of Crete Nash Equilibrium Learning February 7, 2021 16 / 36



Sketch of the proof (cont’d)

STEP 3:

Data based program

minimize fi (xi , x̄−i ) + γ

subject to → (x̄ , γ̄)

xi ∈ Xi

g(xi , x̄−i , θk) ≤ γ,∀k

Robust program

minimize fi (xi , x̄−i ) + γ

subject to
xi ∈ Xi

g(xi , x̄−i , θ) ≤ γ,∀θ ∈ Θ

What happens for a new θ ⇔ Is x̄ feasible for the robust program?
Is this true for any θ1, . . . , θM?
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Sketch of the proof (cont’d)

Data based program

minimize fi (xi , x̄−i ) + γ

subject to → (x̄ , γ̄)

xi ∈ Xi

g(xi , x̄−i , θk) ≤ γ,∀k

Robust program

minimize fi (xi , x̄−i ) + γ

subject to
xi ∈ Xi

g(xi , x̄−i , θ) ≤ γ,∀θ ∈ Θ

Feasibility link [Campi & Garatti, 2008] and [KM, Prandini & Lygeros, 2015]

Fix β ∈ (0, 1). With confidence ≥ 1− β, x̄ is feasible for the robust
program with probability ≥ 1− ε(d), i.e.

P
(
θ : g(x̄i , x̄−1, θ) ≤ γ̄

)
> 1− ε(d) with prob. ≥ 1− β
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Sketch of the proof (cont’d)

Feasibility link

Fix β ∈ (0, 1). With confidence ≥ 1− β, x̄ is feasible for the robust
program with probability ≥ 1− ε(d), i.e.

P
(
θ : g(x̄i , x̄−1, θ) ≤ γ̄

)
> 1− ε(d) with prob. ≥ 1− β

On which parameters does ε depends on?

ε(M) = 1 and
M−1∑

k=0

(
M

k

)
(1− ε(k))M−k = β

for k = d : ε(d) ≈ 2
M

(
d + ln

1
β

)

Logarithmic in β: 1− β can be set close to one
Linear in M−1: The more data the better the result
Linear in d : cardinality of sample compression
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Sketch of the proof (cont’d)

Cardinality of sample compression d

For convex agents’ objective functions and constraint sets

d ≤ # decision variables = # agents × # time-steps

optimization	
direction
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Non-cooperative game – the convex case

Probably approximately correct Nash equilibrium learning
Fix β ∈ (0, 1), and consider the function ε(·) such that

ε(M) = 1 and
M−1∑

k=0

(
M

k

)
(1− ε(k))M−k = β

We then have PM
{
θ1, . . . , θM : P

{
θ : x̄ = x̄+

}
> 1− ε(d)

}
≥ 1− β,

where d = # agents × # time-steps.
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Simulation results

Agents’ cost function

fi (xi ,x−i ) + max
k

g(xi , x−i , θk)

= x>i (A0σ(x) + b0) + max
k
σ(x)>(Akσ(x) + bk)

where
Ak : diagonal with entries from log-normal distribution
bk : entries from uniform distribution

Agents’ constraint set

Xi = {xi :
∑

t

xit = Ei , xit ∈ [x it , x it ], ∀t}

i.e., energy and charge rate limits
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Simulation results

Probability of Nash equilibrium altering (constraint violation)
d 4 6 7 9

Empirical [%] 0.98 1.09 1.26 1.33

Theoretical [%] 8.06 9.76 10.55 12.06

Valley filling behaviour: Charging when price is low

Algorithm 1 Proximal decomposition algorithm
Require: z̄(0) 2 X ⇥�, ⌧ > 0, �inn > 0, �out > 0

1: k  0
2: repeat
3: l 0
4: repeat
5: for i = 1, . . . , N do
6: x

(l+1)
i  arg min

⌫i2Xi

⌫
|
i p0(⌫i, x

(l)
�i) + ĝ(⌫i, x

(l)
�i, y

(l))

+ ⌧
2
k⌫i � x̄

(k)
i k2

7: end for
8: y

(l+1)
i  arg max

⌫2�
ĝ(x(l), ⌫)� ⌧

2
k⌫ � ȳ(k)k2

9: l l + 1
10: until kz(l) � z(l�1)k  �inn

11: z̄(k+1)  z(l)

12: k  k + 1
13: until kz̄(k) � z̄(k�1)k  �out

IV. EXAMPLE

We consider here a setting where the energy price is an
affine function of the aggregate demand schedule �(x) : x 7!P

i2N xi. More formally, p0(x) = A0�(x) + b0, and
p✓(x, ✓m) = Am�(x) + bm, where Am 2 RT⇥T , for
m = 0, . . . , M , is diagonal, and bm 2 RT . Historical price
samples are used to characterise the uncertain price component
p✓. Through standard scenario generation techniques (see,
e.g., [37]) the set {✓1, . . . , ✓M} = {(A1, b1), . . . , (AM , bM )}
of i.i.d. samples is produced.

We analysed the results of four cases, designated as C1,
. . . , C4, each one associated to a random multiextraction of
500 samples. In all of them, the pairs {Am, bm}M

m=1 are
independently extracted from ⇥ ⇢ RT⇥T ⇥ RT according to
(i) a lognormal distribution for the diagonal entries of Am, and
(ii) a positive-valued uniform distribution for the vectors bm;
the cases also differ in the parameters characterizing the EV
constraints Xi, randomly selected from a uniform distribution
(⇠6–15 kW for the rated power Pi, ⇠20–120 kWh for the
desired recharged amount Ei). The robust charging schedules
for a fleet of N = 20 EVs and an interval T = 24 h have been
obtained by implementing Algorithm 1 with �inn = 10�14,
�out = 10�5 and ⌧ = 4.

Fig. 1 depicts two aggregate charging profiles relative to
C4, one associated to a robust NE and the other obtained by
solving the nominal noncooperative game (i.e., neglecting ĝ).
These plots are contrasted with the nominal electricity price,
specifically the diagonal entries {at}T

t=1 of the matrix A0,
while b0 = 0. This price profile has been synthesized by
rescaling a winter weekday demand in the UK [38].

Table I shows the cost violation rates (and the average
relative loss) for the robust solutions x⇤ of C1 to C4, over
106 newly extracted samples (according to the same aforemen-
tioned distributions). More specifically, cost violation occurs
if, for any EV agent i 2 N , the cost relative to the uncertain
term exceeds the one predicted for the robust NE, i.e., when
x⇤|

i (Aw�(x⇤) + bw) > x⇤|
i (Am⇤�(x⇤) + bm⇤), for w =

1, . . . , 106, whereas m⇤ 2 M⇤(x⇤, y⇤) , {m 2 {1, . . . , M} :
g(x⇤, ✓m) = ĝ(x⇤, y⇤)} designates any maximising sample
associated with y⇤. The number of such maximisers is shown
in the last row. Consistently with [27], we observe that this
value is indicative of the confidence level on the solution
robustness (the average loss on the other hand is a random
variable, in general uncorrelated with the violation rate for

TABLE I
VIOLATION RATE

Case C1 C2 C3 C4
Rate [%] 1.33 0.98 1.26 1.09

Avg. loss [%] 0.11 0.08 0.11 0.08
|M⇤| 9 4 7 6
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Fig. 1. Aggregate charging profiles (C4) for the 20 EVs: robust and
nominal solutions [kW] (continuous and dash-dotted traces), and nominal
price coefficient [$ / kW2h] (dashed trace).

unbounded distributions, as the one considered); a rigorous
probabilistic analysis can be found in [28].

Finally, Figs. 2–3 show the convergence of Algorithm 1
in the computation of the NE for case C4, for the agents’
cost functions and algorithm iterates, respectively. A dominant
linear convergence rate can be observed, and less than 4000
outer loop iterations were needed to meet the desired exit
accuracy �out. Inner loop (not shown for space reasons)
enjoys similar convergence rate, and less than 30 iterations
(15 in average) are needed to achieve an error smaller than
�inn = 10�14. The setting considered in this example can
be cast into a decentralized QP optimization, which has been
efficiently solved on a dual-core 7th gen. Intel processor using
Matlab.

V. CONCLUSION
Motivated by DR problems, with grid users acting as com-

peting agents, we consider multi-agent games in the presence
of uncertainty. To robustify agents’ strategies against unknown
externalities we formulate a noncooperative minmax game.
We adopt a data driven paradigm and represent uncertainty
by means of scenarios. Building upon results from [26],
[27], ongoing work will accompany the solution with robust
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Fig. 2. Convergence of EV agents’ and coordinator’s costs (outer loop). bJi

denotes the cost of each player in the augmented game bG (i.e., i = 1, . . . , N+
1), defined as the objective functions in (6)–(7).
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Nash equilibrium efficiency
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Nash equilibrium efficiency

Recall the Nash equilibrium definition
A vector of vehicles’ charging strategies is a Nash equilibrium if

Ji (x̄i , x̄−i ) ≤ Ji (xi , x̄−i ) for all xi ∈ Xi

Assumptions
1 For simplicity assume Ji = g , i.e., common across agents
2 Price is deterministic and affine in aggregate demand

How far are Nash equilibria from social welfare optima?
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Nash equilibria as social optima

Denote the objective function of vehicle i by

g(xi , x−i ) =
∑

t

xit

(
pt
∑

j ,j 6=i

xjt + ptxit

)

For each i , consider the penalty term

ga(xi ) =
∑

t

pt(xit)
2

Nash equilibrium as social optimum
The optimal solution of

minimize
∑

i

g(xi , x−i ) + ga(xi )

subject to: xi ∈ Xi for all i

is a Nash equilibrium of the multi-vehicle game
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Nash equilibria as social optima

Nash equilibrium
The optimal solution of

minimize
∑

i

g(xi , x−i ) + ga(xi )

subject to: xi ∈ Xi for all i

is a Nash equilibrium of the multi-vehicle game.

The penalty term makes the optimization program strictly convex

It admits a unique minimizer ⇒ unique Nash equilibrium.

Technical University of Crete Nash Equilibrium Learning February 7, 2021 27 / 36



Social optima vs Nash equilibria

Social optimum

minimize
∑

i

g(xi , x−i )

subject to: xi ∈ Xi for all i

Nash equilibrium

minimize
∑

i

g(xi , x−i ) + ga(xi )

subject to: xi ∈ Xi for all i

Both of them are obtained as solutions to optimization programs

Nash equilibrium is optimum for the a problem which trades between
total cost and penalty term

Penalty term acts like variance
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Simulation results

“Valley filling” property for both cases

Albeit different solutions; is this always the case? (see vistas)
Nash equilibrium 6= social optimum
Nash equilibrium = social optimum (of another problem)

Case study for 5 vehicles
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From non-cooperative to cooperative ...

What if vehicles were “anarchists”, interested in individual objectives?
What is the “price of anarchy”1, i.e.
relative difference between social welfare optimum and Nash value?
One can’t do much ... but if it is many of them

1Koutsoupias & Papadimitriou, 1999
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From non-cooperative to cooperative ...

Social optimum x?

minimize
∑

i

g(xi , x−i )

subject to: xi ∈ Xi for all i

Nash equilibrium x?

minimize
∑

i

g(xi , x−i ) + ga(xi )

subject to: xi ∈ Xi for all i

Let’s compare the optimal values

Jm(x?) =
∑

i

g(x?i , x
?
−i )

Jm(x?) =
∑

i

g(x?i , x
?
−i )
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From non-cooperative to cooperative ...

Vehicles are heterogeneous, and heterogeneity is modelled assuming certain
parameters in their constraints are randomly chosen from some distribution

Price of anarchy
As the population size m grows, the social optimum tends to the value
of the game, i.e.

lim
m→∞

Jm(x?)

Jm(x?)
= 1

for almost all realizations of the (random) heterogeneity parameters.
Price of anarchy tends to zero!

Vehicles tend to cooperate even though they are selfish individuals
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Price of anarchy

“Valley filling” property for both cases

Nash equilibrium 6= social optimum. Is this always the case?

Not as m increases ... they tend to coincide

Case study for m = 5 and m = 100 vehicles
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Summary

Data driven Nash equilibrium computation

Probabilistic equilibrium sensitivity
A priori robustness certificates

Nash equilibrium efficiency

How far are Nash equilibria from social optima?
Price of anarchy characterization

Other results – future work

Decentralized equilibrium computation via best response algorithms
A posteriori robustness certificates
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Thank you for your attention!
Questions?

Contact at:
kostas.margellos@eng.ox.ac.uk
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