Probably Approximately Correct Nash Equilibrium Learning

Kostas Margellos

Technical University of Crete

• Joint work with Dr Filiberto Fele and Dr Luca Deori

Nash Equilibrium Learning

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation: Electric vehicle charging

- How will the mass adoption of electric vehicles change the demand for electricity?
- Can controlling charging avoid the need to increase power generation capacity?
- Is there a practical way in which this can be achieved?
- How will renewable resources may be taken into account?

Motivation

• Green car revolution - means to address the energy trilema

- Green, cost efficient, reliable
- Vehicles act like *virtual* storage devices
- Not only they store but also defer their consumption in time
- In the UK: 3,500 in 2013, more than 90,000 today and the numbers keep increasing!

Motivation

Techr

- Rapid increase in the adoption of electric vehicles (EVs) in the UK
 - UK commitment to reduce emissions by 80% by 2050
 - Decreasing price of lithium ion batteries

• Power consumption of various household appliances

	Appliance	Power Consumpt	ion (W)	-
	Washing Machine	700		-
	Kettle	1800		
	Refrigerator	35		
	LCD TV	115		
	EV Charger	3500		
		N 14	u e la Le e	◆ 臣 ▶ ◆ 臣 ▶
nical University of Crete	Nash Equi	librium Learning		February 7, 2021

5/36

Motivation

- Electric vehicles offer
 - Peak clipping, i.e. reduce peak demand by discharging at peak time instances (like storage)
 - Valley filling, i.e. charge when electricity price is lower \Rightarrow cost savings

Technical University of Crete

∃ ► < ∃ ►</p>

< 4³ ► <

Electric vehicle charging control

1 Aggregator / central authority sends a *price* incentive to vehicles

price
$$= p(x_1 + \ldots + x_m)$$

 $= p(\sum_i x_i),$

where x_i is the consumption level of each vehicle / agent

Electric vehicle charging control

() Aggregator / central authority sends a *price* incentive to vehicles

price =
$$p(x_1 + ... + x_m)$$

= $p(\sum_i x_i)$,

where x_i is the consumption level of each vehicle / agent

Agents solve some local problem and broadcast an update x_i

Electric vehicle charging control

Aggregator / central authority sends a price incentive to vehicles

price =
$$p(x_1 + ... + x_m)$$

= $p(\sum_i x_i)$,

where x_i is the consumption level of each vehicle / agent

- Agents solve some local problem and broadcast an update x_i
- A new price is calculated and process is repeated

Technical University of Crete

Challenges

- Vehicles act as non-cooperative entities ⇒ multi-agent game
- What happens if price is uncertain? \Rightarrow price volatility

Data driven Nash equilibrium computation
 ⇒ Equilibria become random variables

2 Nash equilibrium efficiency

 \Rightarrow How far from the social welfare optimum?

Technical University of Crete

Data driven Nash equilibrium computation

э

イロト イポト イヨト イヨト

Agents' description

Cost function: $\sum_{t} x_{it} \times p_t \left(\sum_{j} x_{jt} \right)$ [quantity \times price] Constraints: $\sum_{t} x_{it} = E_i$, [prescribed charging level] $x_{it} \in [\underline{x}_{it}, \overline{x}_{it}]$, for all t [consumption limits]

Technical University of Crete

Nash Equilibrium Learning

February 7, 2021 10 / 36

- Agents are selfish, non-cooperative entities
- Interested in minimizing some cost when other agents' strategies are fixed

$$J_i(x_i, x_{-i}) = f_i(x_i, x_{-i}) + \max_{k=1, \dots, M} g(x_i, x_{-i}, \theta_k)$$

• Price is subject to volatility \Rightarrow Represent uncertainty by means of scenarios!

Technical University of Crete

- Agents are selfish, non-cooperative entities
- Interested in minimizing some cost when other agents' strategies are fixed

$$J_i(x_i, x_{-i}) = f_i(x_i, x_{-i}) + \max_{\substack{k=1,...,M}} g(x_i, x_{-i}, \theta_k)$$

Price is subject to volatility ⇒ Represent uncertainty by means of scenarios!

Nash equilibrium

A set of agents' strategies $(\bar{x}_i, \bar{x}_{-i})$ forms a Nash equilibrium if for all i

$$J_i(\bar{x}_i, \bar{x}_{-i}) \leq J_i(\mathbf{x}_i, \bar{x}_{-i}), \text{ for all } \mathbf{x}_i \in \mathbf{X}_i,$$

where X_i is agent's *i* local constraint set. No agent can improve her cost when other agents' strategies are fixed

Technical University of Crete

Nash Equilibrium Learning

February 7, 2021 12 / 36

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Nash equilibrium \bar{x} is a random variable
- How likely is it to remain unchanged when a new uncertainty realization is encountered?

$$\mathbb{P}^{M}\left\{\theta_{1},\ldots,\theta_{M}: \mathbb{P}\left\{\delta: \bar{x}=\bar{x}^{+}\right\} > 1-\epsilon\right\} \geq 1-\beta$$

• Probably approximately correct Nash equilibrium learning

Probably approximately correct Nash equilibrium learning

Fix $\beta \in (0, 1)$, and consider the function $\epsilon(\cdot)$ such that

$$\epsilon(M) = 1 \text{ and } \sum_{k=0}^{M-1} {M \choose k} (1 - \epsilon(k))^{M-k} = \beta$$

We then have $\mathbb{P}^{M}\left\{\theta_{1},\ldots,\theta_{M}: \mathbb{P}\left\{\theta: \bar{x}=\bar{x}^{+}\right\} > 1-\epsilon(d)\right\} \geq 1-\beta$, where d: sample compression, i.e., $\bar{x}_{d}=\bar{x}_{M}$.

... sketch of the proof

- Agents' problem reformulation
- ② Nash equilibria as solutions of variational inequalities (VIs)
- Using the "scenario approach"
 a la Campi, Calafiore, Garatti, Prandini, ...

Sketch of the proof

STEP 1:

Epigraphic reformulation for agent i

 $\begin{array}{l} \text{minimize } f_i(x_i, \bar{x}_{-i}) + \gamma \\ \text{subject to } x_i \in X_i \\ g(x_i, \bar{x}_{-i}, \theta_k) \leq \gamma \text{ for all } k \end{array}$

STEP 2:

• Equilibria can be characterized as solutions to VIs

• By VI sensitivity: constraint satisfaction implies equilibrium insensitivity

$$\begin{split} \text{if } \mathbb{P}\big\{\theta: \ g(\bar{x},\theta) \leq \bar{\gamma}\big\} \geq 1 - \epsilon(\bar{d}) \\ & \dots \text{ then } \mathbb{P}\big\{\theta: \ \bar{x} = \bar{x}^+\big\} \geq 1 - \epsilon(\bar{d}) \end{split}$$

イロト イポト イヨト イヨト 二日

STEP 3:

Data based program	Robust program
minimize $f_i(\mathbf{x}_i, \bar{\mathbf{x}}_{-i}) + \gamma$	minimize $f_i(x_i, \bar{x}_{-i}) + \gamma$
subject to $ ightarrow (ar{x},ar{\gamma})$	subject to
$x_i \in X_i$	$x_i \in X_i$
$g(x_i, ar{x}_{-i}, heta_k) \leq \gamma, orall k$	$g(\mathbf{x}_i, ar{\mathbf{x}}_{-i}, heta) \leq \gamma, orall heta \in \Theta$

What happens for a new θ ⇔ Is x̄ feasible for the robust program?
Is this true for any θ₁,...,θ_M?

ľ	••••	•	•	:	••	•	27. **	•••	•.	•.	•••	•••	•••	•	
									< □	► < 6		≣≯	< ≣ →	æ	9
Tecł	nnical Unive	rsity o	f Cret	e		Nash	Equilibriur	n Learning			Feb	oruary	7, 2021	L	17

/ 36

STEP 3:

Data based program	Robust program
minimize $f_i(\mathbf{x}_i, \bar{\mathbf{x}}_{-i}) + \gamma$	minimize $f_i(x_i, \bar{x}_{-i}) + \gamma$
subject to $ ightarrow (ar{x},ar{\gamma})$	subject to
$x_i \in X_i$	$x_i \in X_i$
$g(\mathbf{x}_i, \bar{\mathbf{x}}_{-i}, \mathbf{ heta}_k) \leq \gamma, orall k$	$g(x_i, ar{x}_{-i}, heta) \leq \gamma, orall heta \in \Theta$

- What happens for a new $\theta \Leftrightarrow$ Is \bar{x} feasible for the robust program?
- Is this true for any $\theta_1, \ldots, \theta_M$?

••••	• *:	•••	••••	••••••	
			• • • • • • • • •	E ► < E ► _ E _	4

Data based program	Robust program
minimize $f_i(x_i, \bar{x}_{-i}) + \gamma$	minimize $f_i(x_i, \bar{x}_{-i}) + \gamma$
subject to $ ightarrow (ar{x},ar{\gamma})$	subject to
$x_i \in X_i$	$x_i \in X_i$
$g(\mathbf{x}_i,ar{\mathbf{x}}_{-i}, heta_k)\leq oldsymbol{\gamma},orall k$	$g({\sf x}_i,ar{\sf x}_{-i}, heta)\leq \gamma, orall heta\in \Theta$

Feasibility link [Campi & Garatti, 2008] and [KM, Prandini & Lygeros, 2015]

Fix $\beta \in (0, 1)$. With confidence $\geq 1 - \beta$, \bar{x} is feasible for the robust program with probability $\geq 1 - \epsilon(d)$, i.e.

$$\mathbb{P}\Big(heta: g(ar{x}_i,ar{x}_{-1}, heta) \leq ar{\gamma}\Big) > 1 - \epsilon(d) ext{ with prob. } \geq 1 - eta$$

Technical University of Crete

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Feasibility link

Fix $\beta \in (0, 1)$. With confidence $\geq 1 - \beta$, \bar{x} is feasible for the robust program with probability $\geq 1 - \epsilon(d)$, i.e.

$$\mathbb{P}\Big(heta:\ g(ar{x}_i,ar{x}_{-1}, heta)\leqar{\gamma}\Big)>1-\epsilon(d)$$
 with prob. $\geq 1-eta$

• On which parameters does ϵ depends on?

$$\epsilon(M) = 1 \text{ and } \sum_{k=0}^{M-1} \binom{M}{k} (1 - \epsilon(k))^{M-k} = \beta$$

for $k = d$: $\epsilon(d) \approx \frac{2}{M} \left(d + \ln \frac{1}{\beta} \right)$

- Logarithmic in β : 1β can be set close to one
- Linear in M^{-1} : The more data the better the result
- Linear in *d*: cardinality of sample compression

Technical University of Crete

Cardinality of sample compression *d*

• For convex agents' objective functions and constraint sets

 $d \leq \#$ decision variables = # agents $\times \#$ time-steps

Non-cooperative game – the convex case

Probably approximately correct Nash equilibrium learning

Fix $\beta \in (0, 1)$, and consider the function $\epsilon(\cdot)$ such that

$$\epsilon(M) = 1 \text{ and } \sum_{k=0}^{M-1} {M \choose k} (1 - \epsilon(k))^{M-k} = \beta$$

We then have $\mathbb{P}^{M}\left\{\theta_{1},\ldots,\theta_{M}: \mathbb{P}\left\{\theta: \bar{x}=\bar{x}^{+}\right\} > 1-\epsilon(d)\right\} \geq 1-\beta$, where d = # agents $\times \#$ time-steps.

Technical University of Crete

Agents' cost function

$$f_i(x_i, x_{-i}) + \max_k g(x_i, x_{-i}, \theta_k)$$

= $x_i^\top (A_0 \sigma(x) + b_0) + \max_k \sigma(x)^\top (A_k \sigma(x) + b_k)$

where

- Ak: diagonal with entries from log-normal distribution
- *b*_{*k*}: entries from uniform distribution
- Agents' constraint set

$$X_i = \{x_i: \sum_t x_{it} = E_i, x_{it} \in [\underline{x}_{it}, \overline{x}_{it}], \forall t\}$$

i.e., energy and charge rate limits

Technical University of Crete

February 7, 2021 22 / 36

Simulation results

• Probability of Nash equilibrium altering (constraint violation)

d	4	6	7	9
Empirical [%]	0.98	1.09	1.26	1.33
Theoretical [%]	8.06	9.76	10.55	12.06

• Valley filling behaviour: Charging when price is low

Technical University of Crete

Nash equilibrium efficiency

Technica	l University o	f Crete
----------	----------------	---------

3

A B +
 A
 B +
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Recall the Nash equilibrium definition

A vector of vehicles' charging strategies is a Nash equilibrium if

 $J_i(\bar{x}_i, \bar{x}_{-i}) \leq J_i(\mathbf{x}_i, \bar{x}_{-i})$ for all $\mathbf{x}_i \in \mathbf{X}_i$

Assumptions

- **(**) For simplicity assume $J_i = g$, i.e., common across agents
- Price is deterministic and affine in aggregate demand

How far are Nash equilibria from social welfare optima?

イロト イポト イヨト イヨト 二日

Nash equilibria as social optima

• Denote the objective function of vehicle *i* by

$$g(\mathbf{x}_i, \mathbf{x}_{-i}) = \sum_t x_{it} \left(p_t \sum_{j, j \neq i} \mathbf{x}_{jt} + p_t \mathbf{x}_{it} \right)$$

• For each *i*, consider the penalty term

$$g_a(x_i) = \sum_t p_t(x_{it})^2$$

Nash equilibrium as social optimum

The optimal solution of

minimize
$$\sum_{i} g(x_i, \mathbf{x}_{-i}) + g_a(x_i)$$

ubject to: $x_i \in X_i$ for all i

is a Nash equilibrium of the multi-vehicle game

S

Nash equilibrium

The optimal solution of

minimize
$$\sum_{i} g(x_i, \mathbf{x}_{-i}) + g_a(x_i)$$

ubject to: $x_i \in X_i$ for all i

is a Nash equilibrium of the multi-vehicle game.

S

- The penalty term makes the optimization program strictly convex
- It admits a unique minimizer \Rightarrow unique Nash equilibrium.

Social optimum	Nash equilibrium
minimize $\sum_{i} g(\mathbf{x}_{i}, \mathbf{x}_{-i})$	minimize $\sum_{i} g(x_i, \mathbf{x}_{-i}) + g_a(x_i)$
subject to: $\mathbf{x}_{i} \in X_{i}$ for all i	subject to: $x_i \in X_i$ for all i

- Both of them are obtained as solutions to optimization programs
- Nash equilibrium is optimum for the a problem which trades between total cost and penalty term
- Penalty term acts like variance

Simulation results

- "Valley filling" property for both cases
- Albeit different solutions; is this always the case? (see vistas)
 - Nash equilibrium \neq social optimum
 - Nash equilibrium = social optimum (of another problem)

Technical University of Crete

From non-cooperative to cooperative ...

- What if vehicles were "anarchists", interested in individual objectives?
- What is the "price of anarchy"¹, i.e. relative difference between social welfare optimum and Nash value?
- One can't do much ... but if it is many of them

¹Koutsoupias & Papadimitriou, 1999

Technical University of Crete

From non-cooperative to cooperative ...

Social optimum
$$x^*$$
Nash equilibrium x^* minimize $\sum_i g(x_i, \mathbf{x}_{-i})$ minimize $\sum_i g(x_i, \mathbf{x}_{-i}) + g_a(x_i)$ subject to: $x_i \in X_i$ for all i subject to: $x_i \in X_i$ for all i

• Let's compare the optimal values

$$J^{m}(\mathbf{x}^{\star}) = \sum_{i} g(x_{i}^{\star}, x_{-i}^{\star})$$
$$J^{m}(\mathbf{x}^{\star}) = \sum_{i} g(x_{i}^{\star}, x_{-i}^{\star})$$

Technical University of Crete

February 7, 2021 31 / 36

Vehicles are heterogeneous, and heterogeneity is modelled assuming certain parameters in their constraints are randomly chosen from some distribution

Price of anarchy

• As the population size *m* grows, the social optimum tends to the value of the game, i.e.

$$\lim_{m\to\infty}\frac{J^m(x^\star)}{J^m(x^\star)}=1$$

for almost all realizations of the (random) heterogeneity parameters.

- Price of anarchy tends to zero!
- Vehicles tend to cooperate even though they are selfish individuals

Price of anarchy

- "Valley filling" property for both cases
- Nash equilibrium \neq social optimum. Is this always the case?
- Not as *m* increases ... they tend to coincide

Technical University of Crete

• Data driven Nash equilibrium computation

- Probabilistic equilibrium sensitivity
- A priori robustness certificates
- Nash equilibrium efficiency
 - How far are Nash equilibria from social optima?
 - Price of anarchy characterization
- Other results future work
 - Decentralized equilibrium computation via best response algorithms
 - A posteriori robustness certificates

3

References

Margellos, Prandini & Lygeros (2016)

On the Connection Between Compression Learning and Scenario Based Single-Stage and Cascading Optimization Problems

IEEE Transactions on Automatic Control, 60(10), 2716-2721.

Deori, Margellos & Prandini (2018)

Price of anarchy in electric vehicle charging control games: When Nash equilibria achieve social welfare

Automatica, 96(10), 150-158.

Fele & Margellos (2020)

Probably approximately correct Nash equilibrium learning *IEEE Transactions on Automatic Control*, to appear.

Romao, Margellos & Papachristodoulou (2021) On the exact feasibility of convex scenario programs with discarded constraints *IEEE Transactions on Automatic Control*, under review.

< □ > < 同 > < 回 > < 回 > < 回 >

Thank you for your attention! Questions?

Contact at: kostas.margellos@eng.ox.ac.uk

Technical University of Crete

Nash Equilibrium Learning

February 7, 2021

36 / 36