Communications Hardware In The Post-Happy-Scaling Era

Alexios Balatsoukas-Stimming
Telecommunications Circuits Laboratory
École polytechnique fédérale de Lausanne
Switzerland

May 16, 2018

Electrical and Computer Engineering Department
Technical University of Crete
Acknowledgments

Funding:

Collaborators:
- W. J. Gross, S. A. Hashemi (McGill University)
- J. R. Cavallaro (Rice University)
- G. Matz, M. Meidlinger (TU Vienna)
- T. Podzorny, J. Uythoven (CERN)
- C.-H. Chen, F. Sheikh (Intel Labs)
The End of the “Happy Scaling” Era

- Increasing DSP algorithm complexity.
- Increasing need for flexibility.
- Increasing need for energy-efficiency.
- Severe variability & reliability issues.
- Vanishing energy & performance gains.
- Skyrocketing NRE: mask & design cost.

Algorithm/hardware co-design is more pertinent than ever. Maintaining progress will require cross-layer and interdisciplinary innovation.
The End of the “Happy Scaling” Era

Increasing DSP algorithm complexity.

Increasing need for flexibility.

Increasing need for energy-efficiency.

Severe variability & reliability issues.

Vanishing energy & performance gains.

Skyrocketing NRE: mask & design cost.

The Way Forward

1. Algorithm/hardware co-design is more pertinent than ever
2. Maintaining progress will require cross-layer and interdisciplinary innovation
Outline

1. **Classical algorithm/hardware co-design:**
 - Hardware implementation of successive cancellation list decoding of polar codes
 - Successive cancellation flip decoding of polar codes & its hardware implementation

2. **Approximate computing:**
 - Throughput-oriented construction of polar codes
 - Error-correction coding on faulty hardware

3. **Communications hardware meets information theory and machine learning:**
 - Terabit/s LDPC code decoders via quantized message passing
 - Neural networks for self-interference cancellation in full-duplex radios
Technology Innovations in 5G

- Wide Bandwidth and Carrier Aggregation
- Flexible and Scalable OFDMA Air-Interface
- Massive MIMO
- Small Cells and Advanced Cellular Concepts
- New Radio Frequencies (mmWave)
- Advanced Channel Codes (LDPC and polar)
Polar Codes

\[A = \{3, 5, 6, 7\} \]

- **Construction:**
 - **Information indices:** \(A \subset \{0, 1, \ldots, N - 1\}, \ |A| = NR, \ N = 2^n. \)
Polar Codes

\[
\mathbf{u} = \begin{bmatrix}
 u_0 \\
 u_1 \\
 u_2 \\
 u_3 \\
 u_4 \\
 u_5 \\
 u_6 \\
 u_7 \\
\end{bmatrix}
\]

- **Construction:**
 - Information indices: \(\mathcal{A} \subset \{0, 1, \ldots, N - 1\} \), \(|\mathcal{A}| = NR \), \(N = 2^n \).

- **Encoding:**
 - \(\mathbf{u}_\mathcal{A} \triangleq [u_i, i \in \mathcal{A}]^T \leftarrow \text{data bits} \),
Polar Codes

\[u = \begin{bmatrix} 0 \\ 0 \\ 0 \\ u_3 \\ 0 \\ u_5 \\ u_6 \\ u_7 \end{bmatrix} \]

- **Construction:**
 - Information indices: \(A \subset \{0, 1, \ldots, N - 1\} \), \(|A| = NR \), \(N = 2^n \).

- **Encoding:**
 - \(u_A \triangleq [u_i, i \in A]^T \leftarrow \) data bits,
 - \(u_{AC} \leftarrow \) known-to-receiver frozen bits (say all-zero).
Polar Codes

\[u = \begin{bmatrix}
0 \\
0 \\
w_3 \\
0 \\
w_5 \\
w_6 \\
w_7
\end{bmatrix} \]

Encoder \[x = Gu \]

- **Construction:**
 - Information indices: \(A \subset \{0, 1, \ldots, N - 1\}, |A| = NR, N = 2^n. \)

- **Encoding:**
 - \(u_A \triangleq [u_i, i \in A]^T \leftarrow \) data bits,
 - \(u_{AC} \leftarrow \) known-to-receiver frozen bits (say all-zero).
 - \(x \leftarrow Gu \) (using \(O(N \log N) \) binary additions).
Polar Codes

\[
\begin{bmatrix}
0 \\
0 \\
0 \\
u_3 \\
0 \\
u_5 \\
u_6 \\
u_7
\end{bmatrix}
\]

Encoder: \(x = Gu \)

\[
W^N(y|x) = \prod_{i=1}^{N} W(y_i|x_i)
\]

• Construction:
 - Information indices: \(A \subset \{0, 1, \ldots, N-1\} \), \(|A| = NR \), \(N = 2^n \).

• Encoding:
 - \(u_A \triangleq [u_i, i \in A]^T \leftarrow \) data bits,
 - \(u_{AC} \leftarrow \) known-to-receiver frozen bits (say all-zero).
 - \(x \leftarrow Gu \) (using \(O(N \log N) \) binary additions).
Polar Codes

\[u = \begin{bmatrix} 0 \\ 0 \\ 0 \\ u_3 \\ 0 \\ u_5 \\ u_6 \\ u_7 \end{bmatrix} \]

Encoder: \(x = G u \)

Memoryless Channel: \(W_N(y|x) = \prod_{i=1}^{N} W(y_i|x_i) \)

Decoder: \(\hat{u} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \hat{u}_3 = ? \\ 0 \\ \hat{u}_5 = ? \\ \hat{u}_6 = ? \\ \hat{u}_7 = ? \end{bmatrix} \)

- Construction:
 - Information indices: \(A \subset \{0, 1, \ldots, N - 1\} \), \(|A| = NR, \ N = 2^n \).

- Encoding:
 - \(u_A \triangleq [u_i, i \in A]^T \leftarrow \) data bits,
 - \(u_{AC} \leftarrow \) known-to-receiver frozen bits (say all-zero).
 - \(x \leftarrow G u \) (using \(O(N \log N) \) binary additions).

- Decoding: Estimate the information bits \(\hat{u}_A \).
Polar Codes

\[
\begin{bmatrix}
0 \\
0 \\
0 \\
u_3 \\
u_5 \\
u_6 \\
u_7
\end{bmatrix}
\xrightarrow{\text{Encoder}}
\begin{bmatrix}
\begin{bmatrix}
x \in \{0, 1\}^N
\end{bmatrix}
\end{bmatrix}
\xrightarrow{\text{Memoryless Channel}}
\begin{bmatrix}
y \in \mathcal{Y}^N
\end{bmatrix}
\xrightarrow{\text{Decoder}}
\begin{bmatrix}
\hat{u}_3 = ? \\
\hat{u}_5 = ? \\
\hat{u}_6 = ? \\
\hat{u}_7 = ?
\end{bmatrix}
\]

\[
\begin{align*}
\text{arg max } & \Pr[Y = y, U_i^j = \hat{u}_i | U_i = \hat{u}_i] \\
\text{Construction:} & \quad \text{Information indices: } \mathcal{A} \subset \{0, 1, \ldots, N - 1\}, \ |\mathcal{A}| = NR, \ N = 2^n.
\end{align*}
\]

Encoding:
- \(u_\mathcal{A} \triangleq [u_i, i \in \mathcal{A}]^T \leftarrow \text{data bits}, \\
- \(u_\mathcal{A}^C \leftarrow \text{known-to-receiver frozen bits (say all-zero)}, \\
- \(x \leftarrow G u \) (using \(O(N \log N) \) binary additions).

Decoding: Estimate the information bits \(\hat{u}_\mathcal{A} \).
- **Successive Cancellation (SC) Decoding:** At each level \(i \in \mathcal{A} \), choose the best possible value of \(u_i \) given the past estimations and frozen bits.
Successive Cancellation Decoding

- Successive traversal of a data dependency graph
- $N \log N$ nodes, each visited exactly once $\rightarrow O(N \log N)$ time complexity!
- Re-use of memory positions $\rightarrow O(N)$ memory complexity!

\[
\begin{align*}
\hat{u} & \quad S_0 & \quad S_1 & \quad S_2 & \quad y \\
\hat{u}_0 = 0 & \quad + & \quad u_0 & \quad + & \quad y_0 \\
\hat{u}_1 = 0 & \quad + & \quad u_0 & \quad + & \quad y_1 \\
\hat{u}_2 = 0 & \quad + & \quad u_0 \oplus u_1 & \quad + & \quad y_2 \\
\hat{u}_3 = \hat{a}_0 & \quad + & \quad u_2 & \quad + & \quad y_3 \\
\hat{u}_4 = 0 & \quad + & \quad u_2 \oplus u_3 & \quad + & \quad y_4 \\
\hat{u}_5 = \hat{a}_1 & \quad + & \quad u_4 & \quad + & \quad y_5 \\
\hat{u}_6 = \hat{a}_2 & \quad + & \quad u_4 \oplus u_5 & \quad + & \quad y_6 \\
\hat{u}_7 = \hat{a}_3 & \quad + & \quad u_6 & \quad + & \quad y_7
\end{align*}
\]
Successive Cancellation Decoding

- Successive traversal of a data dependency graph
- $N \log N$ nodes, each visited exactly once $\rightarrow O(N \log N)$ time complexity!
- Re-use of memory positions $\rightarrow O(N)$ memory complexity!

\[\begin{array}{c}
\hat{u} \\
\hat{u}_0 = 0 \\
\hat{u}_1 = 0 \\
\hat{u}_2 = 0 \\
\hat{u}_3 = \hat{a}_0 \\
\hat{u}_4 = 0 \\
\hat{u}_5 = \hat{a}_1 \\
\hat{u}_6 = \hat{a}_2 \\
\hat{u}_7 = \hat{a}_3 \\
\end{array}\]

\[\begin{array}{c}
S_0 \\
\frac{\hat{a}_0}{\hat{u}_0} \\
\frac{\hat{u}_1}{u_0} \\
\frac{\hat{u}_2}{\hat{a}_0 \oplus u_1} \\
\frac{\hat{u}_3}{\hat{a}_0 \oplus \hat{a}_1} \\
\frac{\hat{u}_4}{\hat{a}_0 \oplus \hat{a}_1 \oplus u_2} \\
\frac{\hat{u}_5}{\hat{a}_0 \oplus \hat{a}_1 \oplus u_2 \oplus u_3} \\
\frac{\hat{u}_6}{\hat{a}_0 \oplus \hat{a}_1 \oplus u_2 \oplus u_3} \\
\frac{\hat{u}_7}{\hat{a}_0 \oplus \hat{a}_1 \oplus u_2 \oplus u_3} \\
\end{array}\]

\[\begin{array}{c}
y \\
y_0 \\
y_1 \\
y_2 \\
y_3 \\
y_4 \\
y_5 \\
y_6 \\
y_7 \\
\end{array}\]

- Two simple soft information update operations:

\[f(\alpha_i, \alpha_j) \approx \text{sgn}(\alpha_i)\text{sgn}(\alpha_j)\min(|\alpha_i|, |\alpha_j|)\]

\[g(\alpha_i, \alpha_j, \hat{a}_k) = \alpha_j + (-1)^{\hat{a}_k} \alpha_i\]
Hardware Implementation of SC Decoding

- **Decoder Core**: contains P processing elements that implement update rules
- **Memories**: store soft information, partial sums, and decoded codeword
- **Controller**: organizes memory reads and writes, and update rule selection
Hardware Implementation of SC Decoding

- **Decoder Core**: contains P processing elements that implement update rules
- **Memories**: store soft information, partial sums, and decoded codeword
- **Controller**: organizes memory reads and writes, and update rule selection

- **Simple** and **flexible** architecture
- **Compact** and **energy-efficient**
Hardware Implementation of SC Decoding

- **Decoder Core**: contains P processing elements that implement update rules
- **Memories**: store soft information, partial sums, and decoded codeword
- **Controller**: organizes memory reads and writes, and update rule selection

Two main challenges with SC decoding:

1. Low throughput due to sequential nature
2. Mediocre error-correcting performance due to error propagation
Hardware Implementation of SC Decoding

- **Decoder Core**: contains P processing elements that implement update rules
- **Memories**: store soft information, partial sums, and decoded codeword
- **Controller**: organizes memory reads and writes, and update rule selection

Two main challenges with SC decoding:

1. Low throughput due to sequential nature
2. Mediocre error-correcting performance due to error propagation

- Simple and flexible architecture
- Compact and energy-efficient
Successive Cancellation List Decoding

- **SC Decoding**: past errors can never be corrected
- **SCL Decoding**: up to L simultaneous paths on the decoding tree
 - **Time complexity**: $O(LN \log N)$, **Memory complexity**: $O(LN)$

Successive Cancellation List Decoding

- **SC Decoding**: past errors can never be corrected
- **SCL Decoding**: up to \(L \) simultaneous paths on the decoding tree

 - **Time complexity**: \(O(LN \log N) \)
 - **Memory complexity**: \(O(LN) \)

\[
N = 8, \ A = \{3, 5, 6, 7\}
\]

Successive Cancellation List Decoding

- **SC Decoding**: past errors can never be corrected
- **SCL Decoding**: up to L simultaneous paths on the decoding tree
 - **Time complexity**: $O(LN \log N)$, **Memory complexity**: $O(LN)$

- $N = 8$, $\mathcal{A} = \{3, 5, 6, 7\}$
- **SC Decoder**

Successive Cancellation List Decoding

- **SC Decoding**: past errors can never be corrected
- **SCL Decoding**: up to L simultaneous paths on the decoding tree
 - Time complexity: $O(LN \log N)$, Memory complexity: $O(LN)$

- $N = 8$, $A = \{3, 5, 6, 7\}$

Successive Cancellation List Decoding

- **SC Decoding**: past errors can never be corrected
- **SCL Decoding**: up to L simultaneous paths on the decoding tree
 - **Time complexity**: $O(LN \log N)$, **Memory complexity**: $O(LN)$

- $N = 8$, $\mathcal{A} = \{3, 5, 6, 7\}$

Successive Cancellation List Decoding

- **SC Decoding**: past errors can never be corrected
- **SCL Decoding**: up to L simultaneous paths on the decoding tree
 - *Time complexity*: $O(LN \log N)$, *Memory complexity*: $O(LN)$

- $N = 8$, $\mathcal{A} = \{3, 5, 6, 7\}$

Successive Cancellation List Decoding

- **SC Decoding**: past errors can never be corrected
- **SCL Decoding**: up to L simultaneous paths on the decoding tree
 - **Time complexity**: $O(LN \log N)$, **Memory complexity**: $O(LN)$

- $N = 8$, $A = \{3, 5, 6, 7\}$

Successive Cancellation List Decoding

- **SC Decoding:** past errors can never be corrected
- **SCL Decoding:** up to L simultaneous paths on the decoding tree
 - Time complexity: $O(LN \log N)$, Memory complexity: $O(LN)$

- $N = 8$, $\mathcal{A} = \{3, 5, 6, 7\}$

Successive Cancellation List Decoding

- **SC Decoding**: past errors can never be corrected
- **SCL Decoding**: up to L simultaneous paths on the decoding tree
 - **Time complexity**: $O(LN \log N)$, **Memory complexity**: $O(LN)$

$N = 8$, $\mathcal{A} = \{3, 5, 6, 7\}$

SC Decoder
- **SC List Decoder**, $L = 2$

Successive Cancellation List Decoding

- **SC Decoding**: past errors can never be corrected
- **SCL Decoding**: up to L simultaneous paths on the decoding tree
 - Time complexity: $O(LN \log N)$, Memory complexity: $O(LN)$

- $N = 8$, $A = \{3, 5, 6, 7\}$
- **SC Decoder**
- **SC List Decoder**, $L = 2$

Successive Cancellation List Decoding

- **SC Decoding**: past errors can never be corrected
- **SCL Decoding**: up to L simultaneous paths on the decoding tree
 - **Time complexity**: $O(LN \log N)$, **Memory complexity**: $O(LN)$

- $N = 8$, $A = \{3, 5, 6, 7\}$
- **SC Decoder**
- **SC List Decoder**, $L = 2$

Successive Cancellation List Decoding

- **SC Decoding**: past errors can never be corrected
- **SCL Decoding**: up to L simultaneous paths on the decoding tree
 - Time complexity: $O(LN \log N)$, Memory complexity: $O(LN)$

- $N = 8$, $A = \{3, 5, 6, 7\}$

- SC Decoder
- SC List Decoder, $L = 2$

Successive Cancellation List Decoding

- **SC Decoding**: past errors can never be corrected
- **SCL Decoding**: up to L simultaneous paths on the decoding tree
 - **Time complexity**: $O(LN \log N)$, **Memory complexity**: $O(LN)$

- $N = 8$, $A = \{3, 5, 6, 7\}$
- **SC Decoder**
- **SC List Decoder**, $L = 2$

Successive Cancellation List Decoding

- **SC Decoding**: past errors can never be corrected
- **SCL Decoding**: up to L simultaneous paths on the decoding tree
 - **Time complexity**: $O(LN \log N)$, **Memory complexity**: $O(LN)$

- $N = 8$, $A = \{3, 5, 6, 7\}$
- **SC Decoder**
- **SC List Decoder**, $L = 2$

Successive Cancellation List Decoding

- **SC Decoding**: past errors can never be corrected
- **SCL Decoding**: up to \(L \) simultaneous paths on the decoding tree
 - Time complexity: \(O(LN \log N) \), Memory complexity: \(O(LN) \)

- \(N = 8, A = \{3, 5, 6, 7\} \)

- **SC Decoder**
- **SC List Decoder, \(L = 2 \)**

Hardware Implementation of SCL Decoding

What changes w.r.t. SC decoding?

- Perform computations for L paths simultaneously
- Compute and sort path metrics to keep L best paths at each step
Hardware Implementation of SCL Decoding

What changes w.r.t. SC decoding?

- Perform computations for L paths simultaneously (highly parallelizable!)
- Compute and sort path metrics to keep L best paths at each step

What we need:

1. L decoder cores
2. L SC memories
3. A path metric sorter
Hardware Implementation of SCL Decoding

What changes w.r.t. SC decoding?

- Perform computations for \(L \) paths simultaneously
- Compute and sort path metrics to keep \(L \) best paths at each step

What we need:

1. \(L \) decoder cores
2. \(L \) SC memories
3. A path metric sorter

We proved an arithmetic re-formulation of SCL decoding that makes the hardware implementation up to 67% more hardware-efficient!

Optimized Metric Sorting for SCL Decoding

- Metric sorter lies on the **critical path** of SCL decoders

Radix-2\(L\) Sorter

Bitonic Sorter

Bubble Sorter

Significant improvement in the area and operating frequency of the decoder!

Optimized Metric Sorting for SCL Decoding

- Metric sorter lies on the **critical path** of SCL decoders
- Exploit reformulated metric properties to simplify the sorter:
 1. When forking, the L new path metrics are augmented versions of the old L ones
 2. Just need the L best among $2L$, no need for the L best to be sorted

Radix-$2L$ Sorter

Bitonic Sorter

Bubble Sorter

Significant improvement in the area and operating frequency of the decoder!

Optimized Metric Sorting for SCL Decoding

- Metric sorter lies on the **critical path** of SCL decoders
- Exploit reformulated metric properties to simplify the sorter:
 1. When forking, the L new path metrics are augmented versions of the old L ones
 2. Just need the L best among $2L$, no need for the L best to be sorted

Radix-$2L$ Sorter

Bitonic Sorter

Bubble Sorter

Significant improvement in the **area and operating frequency** of the decoder!

Successive Cancellation Flip Decoding

SCL Decoding

Most of the computations and memory are wasted most of the time!
Successive Cancellation Flip Decoding

SCL Decoding

Most of the computations and memory are **wasted most of the time**!

- **Observation**: Under SC, most faulty frames are the result of **one wrong decision**

![Graph showing relative frequency of number of errors for different Eb/N0 values](image-url)
Successive Cancellation Flip Decoding

SCL Decoding
Most of the computations and memory are wasted most of the time!

• Observation: Under SC, most faulty frames are the result of one wrong decision

• Successive Cancellation Flip (SCF) decoding:
 1. Perform SC decoding and track \(T \) most unreliable decisions
 2. Use a CRC to identify erroneous decoding
 3. Re-run SC up to \(T \) times, each time flipping the most unreliable decision

Successive Cancellation Flip Decoding

SCL Decoding

Most of the computations and memory are **wasted most of the time**!

- **Observation**: Under SC, most faulty frames are the result of **one wrong decision**

![Graph showing relative frequency vs. number of errors for different Eb/N0 values](image)

- **Successive Cancellation Flip (SCF) decoding**:
 1. Perform SC decoding and track T most unreliable decisions
 2. Use a CRC to identify erroneous decoding
 3. Re-run SC up to T times, each time flipping the most unreliable decision

Error-correcting performance in-between SC and SCL, but:

- **Memory complexity** of SC decoding
- **(Average) time complexity** of SC decoding (at high SNR)

Hardware Implementation of SCF Decoding

- **Simple:** Add an insertion sorter and a CRC unit to an SC decoder

Negligible area overhead!
No impact on latency!
Hardware Implementation of SCF Decoding

• **Simple:** Add an insertion sorter and a CRC unit to an SC decoder

Negligible area overhead!
No impact on latency!

Our proposed SCF decoding algorithm is being considered by the 3GPP as an ultra-low power option for massive machine type communications for IoT in 5G

Bringing It All Together

- **PolarBear**: Manufactured ASIC in ST 28 nm FD-SOI
 - SC, SCF, and SCL decoding on the same chip
 - Run-time algorithm selection for energy-proportional operation

VLSI Circuits are Becoming Unreliable

- Devices suffer from **defects** due to **parameter variations** and "soft errors"
- These issues **compromise reliable operation** and **prevent effective power-reduction techniques** (e.g., voltage scaling)
VLSI Circuits are Becoming Unreliable

- Devices suffer from **defects** due to **parameter variations** and “soft errors”
- These issues **compromise reliable operation** and **prevent effective power-reduction techniques** (e.g., voltage scaling)
- Memories are **particularly sensitive to process variations** and **dominate area and power consumption** of modern systems-on-chip
VLSI Circuits are Becoming Unreliable

- Devices suffer from defects due to parameter variations and “soft errors”
- These issues compromise reliable operation and prevent effective power-reduction techniques (e.g., voltage scaling)
- Memories are particularly sensitive to process variations and dominate area and power consumption of modern systems-on-chip

What to do?

- Hardware protection to avoid errors is costly in terms of area and power
- Discarding faulty chips can decrease the yield dramatically
Approximate Computing

• **Fortunately**, many applications deal with data that is already **stochastic** and/or degrade **gracefully** when data is corrupted
Approximate Computing

- **Fortunately**, many applications deal with data that is already **stochastic** and/or degrade **gracefully** when data is corrupted.

- **Inherent application resilience** can also be exploited for algorithmic simplifications.
Approximate Computing

- **Fortunately**, many applications deal with data that is already **stochastic** and/or degrade **gracefully** when data is corrupted.
- **Inherent application resilience** can also be exploited for algorithmic simplifications.

Example: error-correcting codes

- Throughput-oriented construction of polar codes
- Faulty successive cancellation decoding of polar codes
- Faulty min-sum decoding of LDPC codes
- Faulty windowed min-sum decoding of spatially-coupled LDPC codes

2. A. Balatsoukas-Stimming and A. Burg, "Faulty successive cancellation decoding of polar codes for the binary erasure channel," IEEE Transactions on Communications, Dec. 2017
Approximate Computing

- **Fortunately**, many applications deal with data that is already **stochastic** and/or degrade **gracefully** when data is corrupted.
- **Inherent application resilience** can also be exploited for algorithmic simplifications.

Example: error-correcting codes

- Throughput-oriented construction of polar codes
- Faulty successive cancellation decoding of polar codes
- Faulty min-sum decoding of LDPC codes
- Faulty windowed min-sum decoding of spatially-coupled LDPC codes

2. A. Balatsoukas-Stimming and A. Burg, "Faulty successive cancellation decoding of polar codes for the binary erasure channel," IEEE Transactions on Communications, Dec. 2017
Throughput-Oriented Construction of Polar Codes

- Some SC decoding computations can be skipped for frozen bit groups
- Throughput of SC decoding depends on distribution of frozen bits
Throughput-Oriented Construction of Polar Codes

- Some SC decoding computations can be skipped for frozen bit groups
- Throughput of SC decoding depends on distribution of frozen bits
- Idea: maximize a weighted sum of the throughput and a performance metric
 - Integer linear program \rightarrow greedy algorithm
Throughput-Oriented Construction of Polar Codes

- Some SC decoding computations can be skipped for frozen bit groups
- Throughput of SC decoding depends on the distribution of frozen bits
- Idea: maximize a weighted sum of the throughput and a performance metric
 - Integer linear program → greedy algorithm

Numerous complexity-performance trade-offs

Minimal performance degradation
Polar Codes over the Binary Erasure Channel

• Binary Erasure Channel (BEC):
 - **Input**: 0 or 1
 - **Output**: equal to the input with probability \(1 - p\), equal to ? with probability \(p\)
Polar Codes over the Binary Erasure Channel

• Binary Erasure Channel (BEC):
 - **Input**: 0 or 1
 - **Output**: equal to the input with probability $1 - p$, equal to ? with probability p

• Decoding over the BEC:
 - **Update rules**:
 - $f(a_i, a_j)$: output is ? if at least one input is ?
 - $g(a_i, a_j)$: output is ? if both inputs are ?
Polar Codes over the Binary Erasure Channel

• Binary Erasure Channel (BEC):
 ■ **Input:** 0 or 1
 ■ **Output:** equal to the input with probability $1 - p$, equal to \oplus with probability p

• Decoding over the BEC:
 ■ **Update rules:**
 \[f(a_i, a_j): \text{output is } \oplus \text{ if at least one input is } \oplus \]
 \[g(a_i, a_j): \text{output is } \oplus \text{ if both inputs are } \oplus \]

• What is the erasure probability for each bit?
Polar Codes over the Binary Erasure Channel

- **Binary Erasure Channel (BEC):**
 - **Input:** 0 or 1
 - **Output:** equal to the input with probability $1 - p$, equal to ? with probability p

- **Decoding over the BEC:**
 - **Update rules:**
 - $f(a_i, a_j)$: output is ? if at least one input is ?
 - $g(a_i, a_j)$: output is ? if both inputs are ?

- **What is the erasure probability for each bit?**

Density Evolution

- **Erasure probability at f nodes:** $T^f(\epsilon) = 2\epsilon - \epsilon^2$
- **Erasure probability at g nodes:** $T^g(\epsilon) = \epsilon^2$
Density evolution for faulty SC decoding

• We describe failures in a memory cell as unreliable computations

Fault model
Additional erasures appear in non-erased outputs with probability $0 < \delta < 1$
Density evolution for faulty SC decoding

- We describe failures in a memory cell as unreliable computations

Fault model

Additional erasures appear in non-erased outputs with probability $0 < \delta < 1$

Density Evolution

- Erasure probability at f nodes: $T^f(\epsilon) = 2\epsilon - \epsilon^2 + (1 - 2\epsilon + \epsilon^2)\delta$
- Erasure probability at g nodes: $T^g(\epsilon) = \epsilon^2 + (1 - \epsilon^2)\delta$
Density evolution for faulty SC decoding

- We describe failures in a memory cell as unreliable computations

Fault model

Additional erasures appear in non-erased outputs with probability $0 < \delta < 1$

Density Evolution

- Erasure probability at f nodes: $T^f(\epsilon) = 2\epsilon - \epsilon^2 + (1 - 2\epsilon + \epsilon^2)\delta$
- Erasure probability at g nodes: $T^g(\epsilon) = \epsilon^2 + (1 - \epsilon^2)\delta$

- Polarization process:

$$
\epsilon_{j+1} = \begin{cases} T^f(\epsilon_j) & \text{w.p. } 1/2, \\ T^g(\epsilon_j) & \text{w.p. } 1/2, \end{cases} \quad \epsilon_0 = p.
$$
Density evolution for faulty SC decoding

- We describe failures in a memory cell as unreliable computations

Fault model

Additional erasures appear in **non-erased** outputs with probability $0 < \delta < 1$

Density Evolution

- Erasure probability at f nodes: $T^f(\epsilon) = 2\epsilon - \epsilon^2 + (1 - 2\epsilon + \epsilon^2)\delta$
- Erasure probability at g nodes: $T^g(\epsilon) = \epsilon^2 + (1 - \epsilon^2)\delta$

- Polarization process:

$$\epsilon_{j+1} = \begin{cases}
T^f(\epsilon_j) & \text{w.p. } 1/2, \\
T^g(\epsilon_j) & \text{w.p. } 1/2, \\
\epsilon_0 = p.
\end{cases}$$

Theorem (**All channels** become asymptotically **useless**)

Under faulty SC decoding over the BEC, $\epsilon_j \overset{a.s.}{\longrightarrow} 1.$
Improving robustness: Optimal Blocklength

- Two conflicting processes as the blocklength is increased:
 1. **Polarization** tends to decrease the FER
 2. **Internal erasures** tend to increase the FER (asymptotically dominate)
Improving robustness: Optimal Blocklength

- Two conflicting processes as the blocklength is increased:
 1. **Polarization** tends to decrease the FER
 2. **Internal erasures** tend to increase the FER (*asymptotically dominate*)
- User **upper and lower bounds** to find **FER-optimal** (finite) blocklength.
Improving robustness: Optimal Blocklength

- Two conflicting processes as the blocklength is increased:
 1. **Polarization** tends to decrease the FER
 2. **Internal erasures** tend to increase the FER (asymptotically dominate)
- User **upper and lower bounds** to find **FER-optimal** (finite) blocklength.
Error-free transmission via unequal error protection

- **Concept:** Nodes closer to the root contribute more to the erasure rate reduction
Error-free transmission via unequal error protection

- **Concept:** Nodes closer to the root contribute more to the erasure rate reduction
- Protect $n_p = (n + 1) - n_u$ levels for n_u fixed: protected fraction is **constant**
Error-free transmission via unequal error protection

- **Concept:** Nodes closer to the root contribute more to the erasure rate reduction
- Protect $n_p = (n + 1) - n_u$ levels for n_u fixed: protected fraction is **constant**

Theorem (Full reliability by protecting a constant fraction of the decoder)

1. For any fixed $n_u < n + 1$, ϵ_j converges a.s. to a random variable $\epsilon_\infty \in \{0, 1\}$.

Mult. penalty: $\frac{C}{1-p}$
Error-free transmission via unequal error protection

- **Concept:** Nodes closer to the root contribute more to the erasure rate reduction
- **Protect** $n_p = (n + 1) - n_u$ levels for n_u fixed: protected fraction is constant

Theorem (**Full reliability** by protecting a constant fraction of the decoder)

1. For any fixed $n_u < n + 1$, ϵ_j converges a.s. to a random variable $\epsilon_\infty \in \{0, 1\}$.
2. **Rate loss:** $P(\epsilon_\infty = 0) = \left(1 - \delta\right)^{n_u} (1 - p)$
Error-free transmission via unequal error protection

- **Concept:** Nodes closer to the root contribute more to the erasure rate reduction
- **Protect** $n_p = (n + 1) - n_u$ levels for n_u fixed: protected fraction is constant

Theorem (Full reliability by protecting a constant fraction of the decoder)

1. For any fixed $n_u < n + 1$, ϵ_j converges a.s. to a random variable $\epsilon_\infty \in \{0, 1\}$.
2. **Rate loss:** $P(\epsilon_\infty = 0) = (1 - \delta)^{n_u} (1 - p)$

% of protected MEs:

- $n_p = 0 : 0.00\%$
- $n_p = n + 1 : 100.00\%$
Error-free transmission via unequal error protection

- **Concept:** Nodes closer to the root contribute more to the erasure rate reduction
- **Protect** $n_p = (n + 1) - n_u$ levels for n_u fixed: protected fraction is **constant**

Theorem (Full reliability by protecting a constant fraction of the decoder)

1. For any fixed $n_u < n + 1$, ϵ_j **converges a.s.** to a random variable $\epsilon_\infty \in \{0, 1\}$.
2. **Rate loss:** $P(\epsilon_\infty = 0) = (1 - \delta)^{n_u} (1 - p)$

- **mult. penalty** \hspace{1cm} **BEC cap.**

% of protected MEs:

- $n_p = 0 : \hspace{0.5cm} 0.00\%$
- $n_p = 1 : \hspace{0.5cm} 0.05\%$
- $n_p = n + 1 : 100.00\%$
Error-free transmission via unequal error protection

- **Concept**: Nodes closer to the root contribute more to the erasure rate reduction
- Protect $n_p = (n + 1) - n_u$ levels for n_u fixed: protected fraction is **constant**

Theorem (**Full reliability** by protecting a **constant fraction** of the decoder)

1. For any fixed $n_u < n + 1$, ϵ_j converges a.s. to a random variable $\epsilon_\infty \in \{0, 1\}$.
2. **Rate loss**: $P(\epsilon_\infty = 0) = (1 - \delta)^{n_u} (1 - p)$

% of protected MEs:
- $n_p = 0 : 0.00\%$
- $n_p = 1 : 0.05\%$
- $n_p = 2 : 0.15\%$
- $n_p = n + 1 : 100.00\%$
Error-free transmission via unequal error protection

- **Concept:** Nodes closer to the root contribute more to the erasure rate reduction
- **Protect** $n_p = (n + 1) - n_u$ levels for n_u fixed: protected fraction is **constant**

Theorem (Full reliability by protecting a constant fraction of the decoder)

1. **For any fixed** $n_u < n + 1$, ϵ_j **converges a.s.** to a random variable $\epsilon_\infty \in \{0, 1\}$.
2. **Rate loss:** $P(\epsilon_\infty = 0) = (1 - \delta)^{n_u} (1 - p)$
 - *mult. penalty* BEC cap.

% of protected MEs:

- $n_p = 0$: 0.00%
- $n_p = 1$: 0.05%
- $n_p = 2$: 0.15%
- $n_p = 3$: 0.34%
- $n_p = n + 1$: 100.00%
Error-free transmission via unequal error protection

- **Concept:** Nodes closer to the root contribute more to the erasure rate reduction
- Protect $n_p = (n + 1) - n_u$ levels for n_u fixed: protected fraction is constant

Theorem (Full reliability by protecting a constant fraction of the decoder)

1. For any fixed $n_u < n + 1$, ϵ_j converges a.s. to a random variable $\epsilon_\infty \in \{0, 1\}$.
2. **Rate loss:** $P(\epsilon_\infty = 0) = (1 - \delta)^{n_u} (1 - p)$

\[P(\epsilon_\infty = 0) = \left(1 - \delta\right)^{n_u} \left(1 - p\right) \]

\[\text{mult. penalty \ BEC cap.} \]

% of protected MEs:
- $n_p = 0 : 0.00\%$
- $n_p = 1 : 0.05\%$
- $n_p = 2 : 0.15\%$
- $n_p = 3 : 0.34\%$
- $n_p = 4 : 0.73\%$
- $n_p = n + 1 : 100.00\%$

![Graph showing frame erasure rate vs rate for different values of n_p]
Error-free transmission via unequal error protection

- **Concept**: Nodes closer to the root contribute more to the erasure rate reduction
- Protect \(n_p = (n + 1) - n_u \) levels for \(n_u \) fixed: protected fraction is constant

Theorem (**Full reliability** by protecting a **constant fraction** of the decoder)

1. For any fixed \(n_u < n + 1 \), \(\epsilon_j \) converges a.s. to a random variable \(\epsilon_\infty \in \{0, 1\} \).
2. **Rate loss**: \(P(\epsilon_\infty = 0) = (1 - \delta)^{n_u} (1 - p) \)

<table>
<thead>
<tr>
<th>% of protected MEs:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_p = 0) : 0.00%</td>
</tr>
<tr>
<td>(n_p = 1) : 0.05%</td>
</tr>
<tr>
<td>(n_p = 2) : 0.15%</td>
</tr>
<tr>
<td>(n_p = 3) : 0.34%</td>
</tr>
<tr>
<td>(n_p = 4) : 0.73%</td>
</tr>
<tr>
<td>(n_p = 5) : 1.51%</td>
</tr>
<tr>
<td>(n_p = n + 1) : 100.00%</td>
</tr>
</tbody>
</table>
Error-free transmission via unequal error protection

- **Concept:** Nodes closer to the root contribute more to the erasure rate reduction
- Protect $n_p = (n + 1) - n_u$ levels for n_u fixed: protected fraction is constant

Theorem (Full reliability by protecting a constant fraction of the decoder)

1. For any fixed $n_u < n + 1$, ϵ_j converges a.s. to a random variable $\epsilon_\infty \in \{0, 1\}$.
2. **Rate loss:** $P(\epsilon_\infty = 0) = (1 - \delta)^{n_u} (1 - p)$

% of protected MEs:

- $n_p = 0 : 0.00\%$
- $n_p = 1 : 0.05\%$
- $n_p = 2 : 0.15\%$
- $n_p = 3 : 0.34\%$
- $n_p = 4 : 0.73\%$
- $n_p = 5 : 1.51\%$
- $n_p = n + 1 : 100.00\%$
Outline

1. **Classical algorithm/hardware co-design:**
 - Hardware implementation of successive cancellation list decoding of polar codes
 - Successive cancellation flip decoding of polar codes & its hardware implementation

2. **Approximate computing:**
 - Throughput-oriented construction of polar codes
 - Error-correction coding on faulty hardware

3. **Communications hardware meets information theory and machine learning:**
 - Terabit/s LDPC hardware decoders via quantized message passing
 - Neural networks for self-interference cancellation in full-duplex radios
Min-Sum Decoding of LDPC Codes

- LDPC codes are linear block codes with a sparse parity-check matrix
Min-Sum Decoding of LDPC Codes

- LDPC codes are linear block codes with a sparse parity-check matrix.

- An LDPC code can be represented as a Tanner graph with:
 - Variable nodes (VNs)
 - Check nodes (CNs)

Min-Sum Decoding

Variable-to-check messages: \(\Phi_v(L, \mu) = L + \sum_i \mu_i \),

Check-to-variable messages: \(\Phi_c(\mu) = \prod_j \text{sign} \mu_j \min |\mu| \).
Finite-Alphabet Message Passing Decoding

• In hardware implementations of MS decoding, uniform quantization is used.
Finite-Alphabet Message Passing Decoding

- In hardware implementations of MS decoding, uniform quantization is used.

Conventional Message-Passing

- **Efficient** arithmetic circuits, but **suboptimal** error-correcting performance.
Finite-Alphabet Message Passing Decoding

• In hardware implementations of MS decoding, uniform quantization is used.

Conventional Message-Passing

Decoding Algorithm \rightarrow Quantization

• Efficient arithmetic circuits, but suboptimal error-correcting performance.

Finite-Alphabet Message-Passing

Quantization \rightarrow Decoding Algorithm

• Updates are implemented as optimized look-up tables (LUTs).
• Potential for significant bit-width reduction and performance improvement.

Look-Up Table Design

- Our method is based on an information theoretic criterion.

LUT Design Principle

Local maximization of mutual information between messages and codeword bits.
Look-Up Table Design

- Our method is based on an information theoretic criterion.

LUT Design Principle

Local maximization of mutual information between messages and codeword bits.

- IEEE 802.3an LDPC code \((d_v = 6, \, d_c = 32, \, N = 2048, \, I_{\text{max}} = 5)\)

![Graph showing FER vs. Eb/No](image)
Look-Up Table Design

- Our method is based on an **information theoretic** criterion.

LUT Design Principle

Local **maximization of mutual information** between messages and codeword bits.

- IEEE 802.3an LDPC code \((d_v = 6, d_c = 32, N = 2048, I_{\text{max}} = 5)\)

![Graph showing FER vs. Eb/N0 for Fixed-point and Floating-point]

- Fixed-point, \((Q_{\text{msg}} = 5)\)
- Floating-point, \(I = 5\)
Look-Up Table Design

- Our method is based on an **information theoretic** criterion.

LUT Design Principle

Local **maximization of mutual information** between messages and codeword bits.

- IEEE 802.3an LDPC code ($d_v = 6$, $d_c = 32$, $N = 2048$, $I_{\text{max}} = 5$)
Look-Up Table Design

- Our method is based on an information theoretic criterion.

LUT Design Principle

Local maximization of mutual information between messages and codeword bits.

- IEEE 802.3an LDPC code \((d_v = 6, \ d_c = 32, \ N = 2048, \ I_{\text{max}} = 5) \)

![Graph showing FER vs. Eb/N0 for different message bit-widths and representations.](image-url)
Look-Up Table Design

- Our method is based on an **information theoretic** criterion.

LUT Design Principle

Local maximization of mutual information between messages and codeword bits.

- IEEE 802.3an LDPC code \((d_v = 6, d_c = 32, N = 2048, I_{\text{max}} = 5)\)

![Graph showing FER vs. Eb/N0 for different Qmsg values.]

40% message bit-width reduction with identical FER performance.
Fully Unrolled LDPC Decoder Hardware Architecture

- One CN stage and one VN stage per iteration: $2I_{\text{max}}$ pipeline stages.
Fully Unrolled LDPC Decoder Hardware Architecture

- One CN stage and one VN stage per iteration: $2I_{\text{max}}$ pipeline stages.

<table>
<thead>
<tr>
<th></th>
<th>Quant. MS</th>
<th>LUT-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (mm2)</td>
<td>35.63</td>
<td>33.79</td>
</tr>
<tr>
<td>Throughput (Gbps)</td>
<td>1014</td>
<td>1665</td>
</tr>
<tr>
<td>Area Eff. (Gbps/mm2)</td>
<td>28.46</td>
<td>49.27</td>
</tr>
</tbody>
</table>

- Area reduction: -5%
- Throughput increase: $+64\%$
- Area efficiency increase: $+73\%$
Bi-directional Wireless Communications

Time-division duplexing (TDD)
Wasted time resources: switching interval

Frequency-division duplexing (FDD)
Wasted frequency resources: guard bands

In-Band Full-duplex (IBFD)
Up to twice the throughput wrt TDD & FDD!
No additional bandwidth
No wasted time or frequency resources
Bi-directional Wireless Communications

Time-division duplexing (TDD)
Wasted time resources: switching interval

Frequency-division duplexing (FDD)
Wasted frequency resources: guard bands

In-Band Full-duplex (IBFD)
Up to twice the throughput wrt TDD & FDD!
No additional bandwidth
No wasted time or frequency resources

Fundamental Challenge: Self-interference is much stronger than the desired signal!
Why is Cancellation Challenging?

- **In principle**, cancellation is easy since digital transmitted signal is known!
Why is Cancellation Challenging?

- **In principle**, cancellation is easy since digital transmitted signal is known!
- **In practice**, the digital signal does not tell the whole story!
Why is Cancellation Challenging?

• **In principle**, cancellation is easy since digital transmitted signal is known!
• **In practice**, the digital signal does not tell the whole story!
 - Analog components introduce non-linearities that make digital cancellation difficult.
Why is Cancellation Challenging?

- **In principle**, cancellation is easy since digital transmitted signal is known!
- **In practice**, the digital signal does not tell the whole story!
 - Analog components introduce non-linearities that make **digital cancellation difficult**
- Consider a state-of-the-art non-linear cancellation model:

\[
y(n) = \sum_{p=1}^{P} \sum_{q=0}^{p} \sum_{m=0}^{M+L-1} h_{p,q}(m) x(n-m)^q x^*(n-m)^{p-q}
\]

Example

For \(P = 7 \) and \(M + L = 13 \) memory taps \(\rightarrow 20 \) basis functions and 260 parameters!

Why is Cancellation Challenging?

- **In principle**, cancellation is easy since digital transmitted signal is known!
- **In practice**, the digital signal does not tell the whole story!
 - Analog components introduce non-linearities that make digital cancellation difficult
- Consider a state-of-the-art non-linear cancellation model:

 \[
 y(n) = \sum_{p=1}^{P} \sum_{q=0}^{p} \sum_{m=0}^{M+L-1} h_{p,q}(m) x(n-m)^q x^*(n-m)^{p-q}
 \]

 Example

 For \(P = 7 \) and \(M + L = 13 \) memory taps \(\rightarrow \) 20 basis functions and 260 parameters!

 Idea

 Why not use a **neural network** that extracts structure from training data?

Self-Interference Cancellation Using Neural Networks

- **Decompose** self-interference signal into linear and non-linear part

\[
y(n) = y_{\text{lin}}(n) + y_{\text{nl}}(n)
\]

- \(y_{\text{lin}}(n)\) is easy!
- \(y_{\text{nl}}(n)\) is hard!
Self-Interference Cancellation Using Neural Networks

- **Decompose** self-interference signal into linear and non-linear part

\[y(n) = y_{\text{lin}}(n) + y_{\text{nl}}(n) \]

 - easy!
 - hard!

- **Two-step cancellation:**
 1. Use standard linear digital cancellation:
 \[\hat{y}_{\text{lin}}(n) = \sum_{m=0}^{M+L-1} \hat{h}_{1,1}(m)x(n - m) \]
Self-Interference Cancellation Using Neural Networks

- **Decompose** self-interference signal into linear and non-linear part

\[y(n) = y_{\text{lin}}(n) + y_{\text{nl}}(n) \]

- **Two-step cancellation:**
 1. Use standard linear digital cancellation:
 \[\hat{y}_{\text{lin}}(n) = \sum_{m=0}^{M+L-1} \hat{h}_{1,1}(m)x(n-m) \]
 2. Train a neural network to reproduce and cancel
 \[y_{\text{nl}}(n) \approx y(n) - \hat{y}_{\text{lin}}(n) \]
Experimental Cancellation Results

- 10 MHz OFDM signal, 56 dB passive cancellation, $M + L = 13$ taps
Experimental Cancellation Results

- 10 MHz OFDM signal, 56 dB passive cancellation, $M + L = 13$ taps
Experimental Cancellation Results

- 10 MHz OFDM signal, 56 dB passive cancellation, $M + L = 13$ taps
Experimental Cancellation Results

- 10 MHz OFDM signal, 56 dB passive cancellation, $M + L = 13$ taps
Experimental Cancellation Results

- 10 MHz OFDM signal, 56 dB passive cancellation, $M + L = 13$ taps
Experimental Cancellation Results

• 10 MHz OFDM signal, 56 dB passive cancellation, $M + L = 13$ taps

![Graph showing power spectral density vs frequency for different linear and non-linear methods.]

<table>
<thead>
<tr>
<th></th>
<th>Poly.</th>
<th>NN</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additions</td>
<td>492</td>
<td>493</td>
<td>0%</td>
</tr>
<tr>
<td>Multiplications</td>
<td>741</td>
<td>476</td>
<td>36%</td>
</tr>
</tbody>
</table>
Experimental Cancellation Results

- 10 MHz OFDM signal, 56 dB passive cancellation, $M + L = 13$ taps

Identical cancellation performance with **lower complexity**!
A combination of approaches is necessary to maintain progress in the **post-happy-scaling era**, including:

1. Classical algorithm/hardware co-design
2. Approximate computing
3. Tools from other disciplines
Conclusions

A combination of approaches is necessary to maintain progress in the post-happy-scaling era, including:
1. Classical algorithm/hardware co-design
2. Approximate computing
3. Tools from other disciplines

The end of the happy scaling era creates new challenges and opportunities for innovation!