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The End of the “Happy Scaling” Era

Increasing DSP al-
gorithm complexity.

Increasing need for
flexibility.

Increasing need for
energy-efficiency.

Severe variability &
reliability issues.

Vanishing energy &
performance gains.

Skyrocketing NRE:
mask & design cost.

The Way Forward
1 Algorithm/hardware co-design is more pertinent than ever
2 Maintaining progress will require cross-layer and interdisciplinary innovation
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Outline

1 Classical algorithm/hardware co-design:
Hardware implementation of successive cancellation list decoding of polar codes
Successive cancellation flip decoding of polar codes & its hardware implementation

2 Approximate computing:
Throughput-oriented construction of polar codes
Error-correction coding on faulty hardware

3 Communications hardware meets information theory and machine learning:
Terabit/s LDPC code decoders via quantized message passing
Neural networks for self-interference cancellation in full-duplex radios
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Technology Innovations in 5G

Wide Bandwidth and
Carrier Aggregation

Flexible and Scalable
OFDMA Air-Interface

Massive MIMO

Small Cells and
Advanced Cellular Concepts

New Radio Frequencies
(mmWave)

Advanced Channel Codes
(LDPC and polar)

4/30



Hardware Polar Decoders Approximate ECC Decoding IT and ML meet Hardware Conclusions

Polar Codes

A = {3, 5, 6, 7}

0
1
2
3
4
5
6
7

Encoder
x = Gu

Memoryless Channel
W N (y|x) =

∏N
i=1 W (yi |xi)

x ∈ {0, 1}N

Decoder
y ∈ YN

û =



0
0
0


arg max
ûi∈{0,1}

Pr[Y = y,Ui−1
0 = ûi−1

0 |Ui = ûi ]

• Construction:
Information indices: A ⊂ {0, 1, . . . , N − 1}, |A| = NR, N = 2n .

• Encoding:

uA , [ui , i ∈ A]T ← data bits,
uAC ← known-to-receiver frozen bits (say all-zero).
x← Gu (using O(N log N) binary additions).

• Decoding: Estimate the information bits ûA.

Successive Cancellation (SC) Decoding: At each level i ∈ A, choose the best
possible value of ui given the past estimations and frozen bits.
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Successive Cancellation (SC) Decoding: At each level i ∈ A, choose the best
possible value of ui given the past estimations and frozen bits.

5/30



Hardware Polar Decoders Approximate ECC Decoding IT and ML meet Hardware Conclusions

Polar Codes

u =



0
0
0
u3
0
u5
u6
u7



Encoder
x = Gu

Memoryless Channel
W N (y|x) =

∏N
i=1 W (yi |xi)

x ∈ {0, 1}N

Decoder
y ∈ YN
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ûi∈{0,1}

Pr[Y = y,Ui−1
0 = ûi−1
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û =



0
0
0


arg max
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û6 =?
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Successive Cancellation Decoding

• Successive traversal of a data dependency graph
• N log N nodes, each visited exactly once −→ O(N log N ) time complexity!
• Re-use of memory positions −→ O(N ) memory complexity!

• Two simple soft information
update operations:
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Hardware Implementation of SC Decoding

• Decoder Core: contains P processing elements that implement update rules
• Memories: store soft information, partial sums, and decoded codeword
• Controller: organizes memory reads and writes, and update rule selection

• Simple and flexible architecture
• Compact and energy-efficient

Two main challenges with SC decoding:
1 Low throughput due to sequential nature
2 Mediocre error-correcting performance due to error propagation

7/30



Hardware Polar Decoders Approximate ECC Decoding IT and ML meet Hardware Conclusions

Hardware Implementation of SC Decoding

• Decoder Core: contains P processing elements that implement update rules
• Memories: store soft information, partial sums, and decoded codeword
• Controller: organizes memory reads and writes, and update rule selection

• Simple and flexible architecture
• Compact and energy-efficient

Two main challenges with SC decoding:
1 Low throughput due to sequential nature
2 Mediocre error-correcting performance due to error propagation

7/30



Hardware Polar Decoders Approximate ECC Decoding IT and ML meet Hardware Conclusions

Hardware Implementation of SC Decoding

• Decoder Core: contains P processing elements that implement update rules
• Memories: store soft information, partial sums, and decoded codeword
• Controller: organizes memory reads and writes, and update rule selection

• Simple and flexible architecture
• Compact and energy-efficient

Two main challenges with SC decoding:
1 Low throughput due to sequential nature
2 Mediocre error-correcting performance due to error propagation

7/30



Hardware Polar Decoders Approximate ECC Decoding IT and ML meet Hardware Conclusions

Hardware Implementation of SC Decoding

• Decoder Core: contains P processing elements that implement update rules
• Memories: store soft information, partial sums, and decoded codeword
• Controller: organizes memory reads and writes, and update rule selection

• Simple and flexible architecture
• Compact and energy-efficient

Two main challenges with SC decoding:
1 Low throughput due to sequential nature
2 Mediocre error-correcting performance due to error propagation

7/30



Hardware Polar Decoders Approximate ECC Decoding IT and ML meet Hardware Conclusions

Successive Cancellation List Decoding
• SC Decoding: past errors can never be corrected
• SCL Decoding: up to L simultaneous paths on the decoding tree

Time complexity: O(LN log N), Memory complexity: O(LN)
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Hardware Implementation of SCL Decoding
What changes w.r.t. SC decoding?
• Perform computations for L paths simultaneously

(highly parallelizable!)

• Compute and sort path metrics to keep L best paths at each step

What we need:
1 L decoder cores
2 L SC memories
3 A path metric sorter

We proved an arithmetic re-formulation of SCL decoding that makes the hardware
implementation up to 67% more hardware-efficient!

1 A. Balatsoukas-Stimming, M. Bastani Parizi, A. Burg, “LLR-based successive cancellation list decoding of polar codes,” IEEE Transactions on
Signal Processing, Oct. 2015

9/30



Hardware Polar Decoders Approximate ECC Decoding IT and ML meet Hardware Conclusions

Hardware Implementation of SCL Decoding
What changes w.r.t. SC decoding?
• Perform computations for L paths simultaneously (highly parallelizable!)
• Compute and sort path metrics to keep L best paths at each step

What we need:
1 L decoder cores
2 L SC memories
3 A path metric sorter

We proved an arithmetic re-formulation of SCL decoding that makes the hardware
implementation up to 67% more hardware-efficient!

1 A. Balatsoukas-Stimming, M. Bastani Parizi, A. Burg, “LLR-based successive cancellation list decoding of polar codes,” IEEE Transactions on
Signal Processing, Oct. 2015

9/30



Hardware Polar Decoders Approximate ECC Decoding IT and ML meet Hardware Conclusions

Hardware Implementation of SCL Decoding
What changes w.r.t. SC decoding?
• Perform computations for L paths simultaneously

(highly parallelizable!)

• Compute and sort path metrics to keep L best paths at each step

What we need:
1 L decoder cores
2 L SC memories
3 A path metric sorter

We proved an arithmetic re-formulation of SCL decoding that makes the hardware
implementation up to 67% more hardware-efficient!

1 A. Balatsoukas-Stimming, M. Bastani Parizi, A. Burg, “LLR-based successive cancellation list decoding of polar codes,” IEEE Transactions on
Signal Processing, Oct. 2015

9/30



Hardware Polar Decoders Approximate ECC Decoding IT and ML meet Hardware Conclusions

Optimized Metric Sorting for SCL Decoding
• Metric sorter lies on the critical path of SCL decoders

• Exploit reformulated metric properties to simplify the sorter:

1 When forking, the L new path metrics are augmented versions of the old L ones
2 Just need the L best among 2L, no need for the L best to be sorted

Radix-2L Sorter Bitonic Sorter Bubble Sorter

Significant improvement in the area and operating frequency of the decoder!
1 A. Balatsoukas-Stimming, M. Bastani Parizi, A. Burg, “On metric sorting for successive cancellation list decoding of polar codes,” IEEE

International Symposium on Circuits and Systems, May 2015
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Successive Cancellation Flip Decoding

SCL Decoding
Most of the computations and memory are wasted most of the time!

• Observation: Under SC, most faulty frames are the result of one wrong decision
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Eb/N0 = 1.5 dB

Eb/N0 = 2.0 dB

Eb/N0 = 2.5 dB • Successive Cancellation Flip (SCF)
decoding:

1 Perform SC decoding and track T most
unreliable decisions

2 Use a CRC to identify erroneous decoding
3 Re-run SC up to T times, each time flipping

the most unreliable decision

Error-correcting performance in-between SC and SCL, but:
• Memory complexity of SC decoding
• (Average) time complexity of SC decoding (at high SNR)
1 O. Afisiadis, A. Balatsoukas-Stimming, and A. Burg, “A low-complexity improved successive cancellation decoder for polar codes,” in Asilomar

Conf. on Signals, Systems, and Computers, Nov. 2014
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Hardware Implementation of SCF Decoding
• Simple: Add an insertion sorter and a CRC unit to an SC decoder

Negligible area overhead!
No impact on latency!

Our proposed SCF decoding algorithm is being considered by the 3GPP as an
ultra-low power option for massive machine type communications for IoT in 5G

1 Huawei and HiSilicon, “Computational and implementation complexity of channel coding schemes,” 3GPP TSG RAN WG1 Meeting #86,
Tech. Rep. R1-167213, Aug. 2016
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Bringing It All Together
• PolarBear: Manufactured ASIC in ST 28 nm FD-SOI

SC, SCF, and SCL decoding on the same chip
Run-time algorithm selection for energy-proportional operation

100 MHz 300 MHz

1 P. Giard, A. Balatsoukas-Stimming, C. Müller, A. Bonetti, C. Thibeault, W. J. Gross, P. Flatresse, A. Burg, “PolarBear: A 28-nm FD-SOI
ASIC for decoding of polar codes,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Dec. 2017
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VLSI Circuits are Becoming Unreliable

Single event upset

Process variation 
[K. Roy et al., 2010] Soft-errors [B. Zhai et al., 2008]
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Infineon MPSCO 2004

Reality
 is somewhere in between...

• Devices suffer from defects due to parameter variations and “soft errors”
• These issues compromise reliable operation and prevent effective
power-reduction techniques (e.g., voltage scaling)

• Memories are particularly sensitive to process variations and dominate area
and power consumption of modern systems-on-chip

What to do?

• Hardware protection to avoid errors is costly in terms of area and power
• Discarding faulty chips can decrease the yield dramatically
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Approximate Computing

• Fortunately, many applications deal with data that is already stochastic and/or
degrade gracefully when data is corrupted

• Inherent application resilience can also be exploited for algorithmic
simplifications

Example: error-correcting codes

• Throughput-oriented construction of polar codes
• Faulty successive cancellation decoding of polar codes
• Faulty min-sum decoding of LDPC codes
• Faulty windowed min-sum decoding of spatially-coupled LDPC codes

1 A. Balatsoukas-Stimming, G. Karakonstantis, A. Burg, “Enabling complexity-performance trade-offs for successive cancellation decoding of
polar codes,” International Symposium on Information Theory (ISIT), Jun. 2014

2 A. Balatsoukas-Stimming and A. Burg, "Faulty successive cancellation decoding of polar codes for the binary erasure channel," IEEE
Transactions on Communications, Dec. 2017

3 A. Balatsoukas-Stimming and A. Burg, "Density evolution for min-sum decoding of LDPC codes under unreliable message storage," IEEE
Communications Letters, May 2014

4 J. Mu, A. Vosoughi, J. Andrade, A. Balatsoukas-Stimming, G. Karakonstantis, A. Burg, G. Falcao, V. Silva, and J. R. Cavallaro, "The impact
of faulty memory bit cells on the decoding of spatially-coupled LDPC codes," in Asilomar Conference on Signals, Systems, and Computers,
Nov. 2015
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Throughput-Oriented Construction of Polar Codes
• Some SC decoding computations can be

skipped for frozen bit groups
• Throughput of SC decoding depends on
distribution of frozen bits

• Idea: maximize a weighted sum of the
throughput and a performance metric

Integer linear program → greedy algorithm

Numerous complexity-performance trade-offs Minimal performance degradation
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Polar Codes over the Binary Erasure Channel

• Binary Erasure Channel (BEC):
Input: 0 or 1
Output: equal to the input with probability
1− p, equal to ? with probability p

• Decoding over the BEC:
Update rules:

f (ai , aj): output is ? if at least one input is ?
g(ai , aj): output is ? if both inputs are ?

• What is the erasure probability for each bit?

Density Evolution
• Erasure probability at f nodes: T f (ε) = 2ε− ε2

• Erasure probability at g nodes: T g(ε) = ε2
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Density evolution for faulty SC decoding
• We describe failures in a memory cell as unreliable computations

Fault model
Additional erasures appear in non-erased outputs with probability 0 < δ < 1

Density Evolution

• Erasure probability at f nodes: T f (ε) = 2ε− ε2 + (1− 2ε+ ε2)δ
• Erasure probability at g nodes: T g(ε) = ε2 + (1− ε2)δ

• Polarization process:

εj+1 =
{

T f (εj) w.p. 1/2,
T g(εj) w.p. 1/2, ε0 = p.

Theorem (All channels become asymptotically useless)

Under faulty SC decoding over the BEC, εj
a.s.−−→ 1.
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Improving robustness: Optimal Blocklength
• Two conflicting processes as the blocklength is increased:

1 Polarization tends to decrease the FER
2 Internal erasures tend to increase the FER (asymptotically dominate)

• User upper and lower bounds to find FER-optimal (finite) blocklength.
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Error-free transmission via unequal error protection
• Concept: Nodes closer to the root contribute more to the erasure rate reduction

• Protect np = (n + 1)− nu levels for nu fixed: protected fraction is constant

Theorem (Full reliability by protecting a constant fraction of the decoder)

1 For any fixed nu < n + 1, εj converges a.s. to a random variable ε∞ ∈ {0, 1}.
2 Rate loss: P (ε∞ = 0) = (1− δ)nu︸ ︷︷ ︸

mult. penalty

(1− p)︸ ︷︷ ︸
BEC cap.
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• np = 5 : 1.51%
• np = n + 1 : 100.00%
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Outline

1 Classical algorithm/hardware co-design:
Hardware implementation of successive cancellation list decoding of polar codes
Successive cancellation flip decoding of polar codes & its hardware implementation

2 Approximate computing:
Throughput-oriented construction of polar codes
Error-correction coding on faulty hardware

3 Communications hardware meets information theory and machine learning:
Terabit/s LDPC hardware decoders via quantized message passing
Neural networks for self-interference cancellation in full-duplex radios
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Min-Sum Decoding of LDPC Codes

• LDPC codes are linear block codes with a
sparse parity-check matrix

• An LDPC code can be represented as a Tanner
graph with:

Variable nodes (VNs)
Check nodes (CNs)

Min-Sum Decoding

Variable-to-check messages: Φv(L,µ
)

= L +
∑

i

µi ,

Check-to-variable messages: Φc(µ
)

=
∏

j

signµj min |µ|.

22/30



Hardware Polar Decoders Approximate ECC Decoding IT and ML meet Hardware Conclusions

Min-Sum Decoding of LDPC Codes

• LDPC codes are linear block codes with a
sparse parity-check matrix

• An LDPC code can be represented as a Tanner
graph with:

Variable nodes (VNs)
Check nodes (CNs)

Min-Sum Decoding

Variable-to-check messages: Φv(L,µ
)

= L +
∑

i

µi ,

Check-to-variable messages: Φc(µ
)

=
∏

j

signµj min |µ|.

22/30



Hardware Polar Decoders Approximate ECC Decoding IT and ML meet Hardware Conclusions

Finite-Alphabet Message Passing Decoding
• In hardware implementations of MS decoding, uniform quantization is used.

Conventional Message-Passing
Decoding Algorithm −→ Quantization

• Efficient arithmetic circuits, but suboptimal error-correcting performance.

Finite-Alphabet Message-Passing
Quantization −→ Decoding Algorithm

• Updates are implemented as optimized look-up tables (LUTs).
• Potential for significant bit-width reduction and performance improvement.
1 R. Ghanaatian, A. Balatsoukas-Stimming, C. Müller, M. Meidlinger, G. Matz, A. Teman, and A. Burg, "A 588 Gbps LDPC decoder based on

finite-alphabet message passing," IEEE Transactions on Very Large Scale Integration Systems, Feb. 2018

2 M. Meidlinger, A. Balatsoukas-Stimming, A. Burg, and G. Matz, "Quantized message passing for LDPC codes," in Asilomar Conference on
Signals, Systems, and Computers, May 2015

3 A. Balatsoukas-Stimming, M. Meidlinger, R. Ghanaatian, G. Matz, and A. Burg, "A fully-unrolled LDPC decoder based on quantized message
passing," in IEEE International Workshop on Signal Processing Systems (SiPS), Oct. 2015
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Look-Up Table Design
• Our method is based on an information theoretic criterion.

LUT Design Principle
Local maximization of mutual information between messages and codeword bits.

• IEEE 802.3an LDPC code (dv = 6, dc = 32, N = 2048, Imax = 5)
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Fully Unrolled LDPC Decoder Hardware Architecture

• One CN stage and one VN stage per iteration: 2Imax pipeline stages.

Quant. MS LUT-based
Area (mm2) 35.63 33.79 −5%
Throughput (Gbps) 1014 1665 +64%
Area Eff. (Gbps/mm2) 28.46 49.27 +73%
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Bi-directional Wireless Communications

Time-division duplexing (TDD)
Wasted time resources: switching interval

Frequency-division duplexing (FDD)
Wasted frequency resources: guard bands

In-Band Full-duplex (IBFD)
Up to twice the throughput wrt TDD & FDD!
No additional bandwidth
No wasted time or frequency resources

Fundamental Challenge: Self-interference is much stronger than the desired signal!
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Why is Cancellation Challenging?
• In principle, cancellation is easy since digital transmitted signal is known!

• In practice, the digital signal does not tell the whole story!

Analog components introduce non-linearities that make digital cancellation difficult

• Consider a state-of-the-art non-linear cancellation model:

y(n) =
P∑

p=1,
p odd

p∑
q=0

M+L−1∑
m=0

hp,q(m) x(n −m)qx∗(n −m)p−q︸ ︷︷ ︸
basis functions

Example
For P = 7 and M + L = 13 memory taps → 20 basis functions and 260 parameters!

Idea
Why not use a neural network that extracts structure from training data?

1 D. Korpi, L. Anttila, and M. Valkama, “Nonlinear self-interference cancellation in MIMO full-duplex transceivers under crosstalk,” EURASIP
Journal on Wireless Communications and Networking, Feb. 2017

2 A. Balatsoukas-Stimming, “Non-linear digital self-interference cancellation for in-band full-duplex radios using neural networks,” IEEE
International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Jun. 2018 (accepted)
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Self-Interference Cancellation Using Neural Networks
• Decompose self-interference signal into linear and non-linear part

y(n) = ylin(n)︸ ︷︷ ︸
easy!

+ ynl(n)︸ ︷︷ ︸
hard!

• Two-step cancellation:

1 Use standard linear digital cancellation: ŷlin(n) =
∑M+L−1

m=0 ĥ1,1(m)x(n −m)
2 Train a neural network to reproduce and cancel ynl(n) ≈ y(n)− ŷlin(n)

<{x(n)}

={x(n)}

<{x(n−1)}

={x(n−1)}

<{x(n−2)}

={x(n−2)}

<{ŷnl(n)}

={ŷnl(n)}

Hidden layerInput layer Output layer
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<{ŷnl(n)}
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Experimental Cancellation Results
• 10 MHz OFDM signal, 56 dB passive cancellation, M + L = 13 taps
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Poly. NN Improvement
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Multiplications 741 476 36%

Identical cancellation performance with lower complexity!
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Conclusions

• A combination of approaches is necessary to maintain progress in the
post-happy-scaling era, including:

1 Classical algorithm/hardware co-design
2 Approximate computing
3 Tools from other disciplines

The end of the happy scaling era creates new
challenges and opportunities for innovation!
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