Communications Hardware In The Post-Happy-Scaling Era

Alexios Balatsoukas-Stimming

Telecommunications Circuits Laboratory École polytechnique fédérale de Lausanne Switzerland

May 16, 2018

Electrical and Computer Engineering Department Technical University of Crete

Telecommunications Circuits Laboratory

Acknowledgments

Funding:

Collaborators:

- O. Afisiadis, K. Alexandris, A. Austin, M. Bastani Parizi, P. Belanovic, A. Burg, R. Ghanaatian, P. Giard, G. Karakonstantis (EPFL)
- W. J. Gross, S. A. Hashemi (McGill University)
- J. R. Cavallaro (Rice University)
- G. Matz, M. Meidlinger (TU Vienna)
- T. Podzorny, J. Uythoven (CERN)
- C.-H. Chen, F. Sheikh (Intel Labs)

The End of the "Happy Scaling" Era

The End of the "Happy Scaling" Era

The Way Forward

- 1 Algorithm/hardware co-design is more pertinent than ever
- **9** Maintaining progress will require cross-layer and interdisciplinary innovation

Outline

1 Classical algorithm/hardware co-design:

- Hardware implementation of successive cancellation list decoding of polar codes
- Successive cancellation flip decoding of polar codes & its hardware implementation

Ø Approximate computing:

- Throughput-oriented construction of polar codes
- Error-correction coding on faulty hardware

6 Communications hardware meets information theory and machine learning:

- Terabit/s LDPC code decoders via quantized message passing
- Neural networks for self-interference cancellation in full-duplex radios

Technology Innovations in 5G

Flexible and Scalable OFDMA Air-Interface

Massive MIMO

Small Cells and Advanced Cellular Concepts

New Radio Frequencies (mmWave)

Advanced Channel Codes (LDPC and polar)

3 $\mathcal{A} = \{3, 5, 6, 7\}$ 5 $\mathbf{6}$

• Construction:

7

Information indices: $\mathcal{A} \subset \{0, 1, \dots, N-1\}$, $|\mathcal{A}| = NR$, $N = 2^n$.

 $\mathbf{u} = \begin{bmatrix} u_0 \\ u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \end{bmatrix}$

- Construction:
 - Information indices: $\mathcal{A} \subset \{0, 1, \dots, N-1\}$, $|\mathcal{A}| = NR$, $N = 2^n$.
- Encoding:
 - $\mathbf{u}_{\mathcal{A}} \triangleq [u_i, i \in \mathcal{A}]^T \leftarrow \mathsf{data \ bits},$

0 0 u_3 u = 0 u_5 u_6 u_7

- Construction:
 - Information indices: $\mathcal{A} \subset \{0, 1, \dots, N-1\}$, $|\mathcal{A}| = NR$, $N = 2^n$.
- Encoding: •

 - $\mathbf{u}_{\mathcal{A}} \triangleq [u_i, i \in \mathcal{A}]^T \leftarrow \text{data bits,}$ $\mathbf{u}_{\mathcal{A}^C} \leftarrow \text{known-to-receiver frozen bits (say all-zero).}$

- Construction:
 - Information indices: $\mathcal{A} \subset \{0, 1, \dots, N-1\}$, $|\mathcal{A}| = NR$, $N = 2^n$.
- Encoding:
 - $\mathbf{u}_{\mathcal{A}} \triangleq [u_i, i \in \mathcal{A}]^T \leftarrow \mathsf{data} \mathsf{ bits},$
 - $\mathbf{u}_{\mathcal{A}^C} \leftarrow \text{known-to-receiver frozen bits (say all-zero)}.$
 - **•** $\mathbf{x} \leftarrow \mathbf{Gu}$ (using $O(N \log N)$ binary additions).

- Construction:
 - Information indices: $\mathcal{A} \subset \{0, 1, \dots, N-1\}$, $|\mathcal{A}| = NR$, $N = 2^n$.
- Encoding:
 - $\mathbf{u}_{\mathcal{A}} \triangleq [u_i, i \in \mathcal{A}]^T \leftarrow \mathsf{data} \mathsf{ bits},$
 - $\mathbf{u}_{\mathcal{A}^C} \leftarrow \text{known-to-receiver frozen bits (say all-zero)}.$
 - $\mathbf{x} \leftarrow \mathbf{Gu}$ (using $O(N \log N)$ binary additions).

- Construction:
 - Information indices: $\mathcal{A} \subset \{0, 1, \dots, N-1\}$, $|\mathcal{A}| = NR$, $N = 2^n$.
- Encoding:
 - $\mathbf{u}_{\mathcal{A}} \triangleq [u_i, i \in \mathcal{A}]^T \leftarrow \mathsf{data} \mathsf{ bits},$
 - $\mathbf{u}_{\mathcal{A}^C} \leftarrow \text{known-to-receiver frozen bits (say all-zero)}.$
 - $\mathbf{x} \leftarrow \mathbf{Gu}$ (using $O(N \log N)$ binary additions).
- Decoding: Estimate the information bits $\hat{\mathbf{u}}_{\mathcal{A}}$.

- Construction:
 - Information indices: $\mathcal{A} \subset \{0, 1, \dots, N-1\}$, $|\mathcal{A}| = NR$, $N = 2^n$.
- Encoding:
 - $\mathbf{u}_{\mathcal{A}} \triangleq [u_i, i \in \mathcal{A}]^T \leftarrow \mathsf{data} \mathsf{ bits},$
 - $\mathbf{u}_{\mathcal{A}^C} \leftarrow \text{known-to-receiver frozen bits (say all-zero)}.$
 - $\mathbf{x} \leftarrow \mathbf{Gu}$ (using $O(N \log N)$ binary additions).
- Decoding: Estimate the information bits $\hat{\mathbf{u}}_{\mathcal{A}}$.
 - Successive Cancellation (SC) Decoding: At each level $i \in A$, choose the best possible value of u_i given the past estimations and frozen bits.

- Successive traversal of a data dependency graph
- $N \log N$ nodes, each visited exactly once $\longrightarrow O(N \log N)$ time complexity!
- Re-use of memory positions $\longrightarrow O(N)$ memory complexity!

- Successive traversal of a data dependency graph
- $N \log N$ nodes, each visited exactly once $\longrightarrow O(N \log N)$ time complexity!
- Re-use of memory positions $\longrightarrow O(N)$ memory complexity!

• Two simple soft information update operations:

- Decoder Core: contains P processing elements that implement update rules
- Memories: store soft information, partial sums, and decoded codeword
- Controller: organizes memory reads and writes, and update rule selection

- Decoder Core: contains P processing elements that implement update rules
- Memories: store soft information, partial sums, and decoded codeword
- Controller: organizes memory reads and writes, and update rule selection

- Simple and flexible architecture
- Compact and energy-efficient

- Decoder Core: contains P processing elements that implement update rules
- Memories: store soft information, partial sums, and decoded codeword
- Controller: organizes memory reads and writes, and update rule selection

- Simple and flexible architecture
- Compact and energy-efficient

Two main challenges with SC decoding:

- 1 Low throughput due to sequential nature
- Ø Mediocre error-correcting performance due to error propagation

- Decoder Core: contains P processing elements that implement update rules
- Memories: store soft information, partial sums, and decoded codeword
- Controller: organizes memory reads and writes, and update rule selection

- Simple and flexible architecture
- Compact and energy-efficient

Two main challenges with SC decoding:

- 1 Low throughput due to sequential nature
- **2** Mediocre error-correcting performance due to error propagation

- SC Decoding: past errors can never be corrected
- SCL Decoding: up to L simultaneous paths on the decoding tree
 - **Time complexity:** $O(LN \log N)$, Memory complexity: $O(L\tilde{N})$

- SC Decoding: past errors can never be corrected
- SCL Decoding: up to L simultaneous paths on the decoding tree
 - **Time complexity:** $O(LN \log N)$, Memory complexity: O(LN)

- SC Decoding: past errors can never be corrected
- SCL Decoding: up to L simultaneous paths on the decoding tree
 - **Time complexity:** $O(LN \log N)$, Memory complexity: O(LN)

- SC Decoding: past errors can never be corrected
- SCL Decoding: up to L simultaneous paths on the decoding tree
 - **Time complexity:** $O(LN \log N)$, Memory complexity: O(LN)

- SC Decoding: past errors can never be corrected
- SCL Decoding: up to L simultaneous paths on the decoding tree
 - **Time complexity:** $O(LN \log N)$, Memory complexity: O(LN)

- SC Decoding: past errors can never be corrected
- SCL Decoding: up to L simultaneous paths on the decoding tree
 - **Time complexity:** $O(LN \log N)$, Memory complexity: O(LN)

- SC Decoding: past errors can never be corrected
- SCL Decoding: up to L simultaneous paths on the decoding tree
 - **Time complexity:** $O(LN \log N)$, Memory complexity: O(LN)

- SC Decoding: past errors can never be corrected
- SCL Decoding: up to L simultaneous paths on the decoding tree
 - **Time complexity:** $O(LN \log N)$, Memory complexity: O(LN)

- SC Decoding: past errors can never be corrected
- SCL Decoding: up to L simultaneous paths on the decoding tree
 - **Time complexity:** $O(LN \log N)$, Memory complexity: O(LN)

- SC Decoding: past errors can never be corrected
- SCL Decoding: up to L simultaneous paths on the decoding tree
 - **Time complexity:** $O(LN \log N)$, Memory complexity: O(LN)

- SC Decoding: past errors can never be corrected
- SCL Decoding: up to L simultaneous paths on the decoding tree
 - **Time complexity:** $O(LN \log N)$, Memory complexity: O(LN)

- SC Decoding: past errors can never be corrected
- SCL Decoding: up to L simultaneous paths on the decoding tree
 - **Time complexity:** $O(LN \log N)$, Memory complexity: O(LN)

- SC Decoding: past errors can never be corrected
- SCL Decoding: up to L simultaneous paths on the decoding tree
 - **Time complexity:** $O(LN \log N)$, Memory complexity: O(LN)

- SC Decoding: past errors can never be corrected
- SCL Decoding: up to L simultaneous paths on the decoding tree
 - **Time complexity:** $O(LN \log N)$, Memory complexity: O(LN)

- SC Decoding: past errors can never be corrected
- SCL Decoding: up to L simultaneous paths on the decoding tree
 - **Time complexity:** $O(LN \log N)$, Memory complexity: O(LN)

What changes w.r.t. SC decoding?

- Perform computations for L paths simultaneously
- Compute and sort path metrics to keep L best paths at each step

What changes w.r.t. SC decoding?

- Perform computations for L paths simultaneously (highly parallelizable!)
- Compute and sort path metrics to keep L best paths at each step

Hardware Implementation of SCL Decoding

What changes w.r.t. SC decoding?

- Perform computations for L paths simultaneously
- Compute and sort path metrics to keep L best paths at each step

We proved an arithmetic re-formulation of SCL decoding that makes the hardware implementation up to 67% more hardware-efficient!

A. Balatsoukas-Stimming, M. Bastani Parizi, A. Burg, "LLR-based successive cancellation list decoding of polar codes," IEEE Transactions on Signal Processing, Oct. 2015

Optimized Metric Sorting for SCL Decoding

• Metric sorter lies on the critical path of SCL decoders

Radix-2L Sorter

Bitonic Sorter

Bubble Sorter

Optimized Metric Sorting for SCL Decoding

- Metric sorter lies on the critical path of SCL decoders
- Exploit reformulated metric properties to simplify the sorter:
 - ① When forking, the L new path metrics are augmented versions of the old L ones
 - **2** Just need the L best among 2L, no need for the L best to be sorted

Optimized Metric Sorting for SCL Decoding

- Metric sorter lies on the critical path of SCL decoders
- Exploit reformulated metric properties to simplify the sorter:
 - ① When forking, the L new path metrics are augmented versions of the old L ones
 - **2** Just need the L best among 2L, no need for the L best to be sorted

Significant improvement in the area and operating frequency of the decoder!

 A. Balatsoukas-Stimming, M. Bastani Parizi, A. Burg, "On metric sorting for successive cancellation list decoding of polar codes," IEEE International Symposium on Circuits and Systems, May 2015

SCL Decoding

Most of the computations and memory are wasted most of the time!

SCL Decoding

Most of the computations and memory are wasted most of the time!

• Observation: Under SC, most faulty frames are the result of one wrong decision

SCL Decoding

Most of the computations and memory are wasted most of the time!

• Observation: Under SC, most faulty frames are the result of one wrong decision

- Successive Cancellation Flip (SCF) decoding:
 - Perform SC decoding and track T most unreliable decisions
 - Ø Use a CRC to identify erroneous decoding
 - **8** Re-run SC up to *T* times, each time flipping the most unreliable decision

 O. Afisiadis, A. Balatsoukas-Stimming, and A. Burg, "A low-complexity improved successive cancellation decoder for polar codes," in Asilomar Conf. on Signals, Systems, and Computers, Nov. 2014

SCL Decoding

Most of the computations and memory are wasted most of the time!

• Observation: Under SC, most faulty frames are the result of one wrong decision

- Successive Cancellation Flip (SCF) decoding:
 - Perform SC decoding and track T most unreliable decisions
 - Ø Use a CRC to identify erroneous decoding
 - **8** Re-run SC up to *T* times, each time flipping the most unreliable decision

Error-correcting performance in-between SC and SCL, but:

- Memory complexity of SC decoding
- (Average) time complexity of SC decoding (at high SNR)

 O. Afisiadis, A. Balatsoukas-Stimming, and A. Burg, "A low-complexity improved successive cancellation decoder for polar codes," in Asilomar Conf. on Signals, Systems, and Computers, Nov. 2014

Hardware Implementation of SCF Decoding

• Simple: Add an insertion sorter and a CRC unit to an SC decoder

Negligible area overhead! No impact on latency!

Hardware Implementation of SCF Decoding

• Simple: Add an insertion sorter and a CRC unit to an SC decoder

Our proposed SCF decoding algorithm is being considered by the 3GPP as an ultra-low power option for massive machine type communications for loT in 5G $\,$

Huawei and HiSilicon, "Computational and implementation complexity of channel coding schemes," 3GPP TSG RAN WG1 Meeting #86, Tech. Rep. R1-167213, Aug. 2016

Bringing It All Together

- POLARBEAR: Manufactured ASIC in ST 28 nm FD-SOI
 - SC, SCF, and SCL decoding on the same chip
 - Run-time algorithm selection for energy-proportional operation

P. Giard, A. Balatsoukas-Stimming, C. Müller, A. Bonetti, C. Thibeault, W. J. Gross, P. Flatresse, A. Burg, "POLARBEAR: A 28-nm FD-SOI ASIC for decoding of polar codes," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Dec. 2017

VLSI Circuits are Becoming Unreliable

- Devices suffer from defects due to parameter variations and "soft errors"
- These issues compromise reliable operation and prevent effective power-reduction techniques (e.g., voltage scaling)

VLSI Circuits are Becoming Unreliable

- Devices suffer from defects due to parameter variations and "soft errors"
- These issues compromise reliable operation and prevent effective power-reduction techniques (e.g., voltage scaling)
- Memories are particularly sensitive to process variations and dominate area and power consumption of modern systems-on-chip

year

Infineon MPSCO 200

2000 '02 '04 'n '08 '10

Prediction Semico Research Corp.

ASIC IP Report 2007

VLSI Circuits are Becoming Unreliable

- Devices suffer from defects due to parameter variations and "soft errors"
- These issues compromise reliable operation and prevent effective power-reduction techniques (e.g., voltage scaling)
- Memories are particularly sensitive to process variations and dominate area and power consumption of modern systems-on-chip

What to do?

- Hardware protection to avoid errors is costly in terms of area and power
- Discarding faulty chips can decrease the yield dramatically

• Fortunately, many applications deal with data that is already stochastic and/or degrade gracefully when data is corrupted

- Fortunately, many applications deal with data that is already stochastic and/or degrade gracefully when data is corrupted
- Inherent application resilience can also be exploited for algorithmic simplifications

- Fortunately, many applications deal with data that is already stochastic and/or degrade gracefully when data is corrupted
- Inherent application resilience can also be exploited for algorithmic simplifications

Example: error-correcting codes

- Throughput-oriented construction of polar codes
- · Faulty successive cancellation decoding of polar codes
- Faulty min-sum decoding of LDPC codes
- Faulty windowed min-sum decoding of spatially-coupled LDPC codes
- A. Balatsoukas-Stimming, G. Karakonstantis, A. Burg, "Enabling complexity-performance trade-offs for successive cancellation decoding of polar codes," International Symposium on Information Theory (ISIT), Jun. 2014
- A. Balatsoukas-Stimming and A. Burg, "Faulty successive cancellation decoding of polar codes for the binary erasure channel," IEEE Transactions on Communications, Dec. 2017
- 8 A. Balatsoukas-Stimming and A. Burg, "Density evolution for min-sum decoding of LDPC codes under unreliable message storage," IEEE Communications Letters, May 2014
- J. Mu, A. Vosoughi, J. Andrade, A. Balatsoukas-Stimming, G. Karakonstantis, A. Burg, G. Falcao, V. Silva, and J. R. Cavallaro, "The impact of faulty memory bit cells on the decoding of spatially-coupled LDPC codes," in Asilomar Conference on Signals, Systems, and Computers, Nov. 2015

- Fortunately, many applications deal with data that is already stochastic and/or degrade gracefully when data is corrupted
- Inherent application resilience can also be exploited for algorithmic simplifications

Example: error-correcting codes

- Throughput-oriented construction of polar codes
- Faulty successive cancellation decoding of polar codes
- Faulty min-sum decoding of LDPC codes
- Faulty windowed min-sum decoding of spatially-coupled LDPC codes
- A. Balatsoukas-Stimming, G. Karakonstantis, A. Burg, "Enabling complexity-performance trade-offs for successive cancellation decoding of polar codes," International Symposium on Information Theory (ISIT), Jun. 2014
- A. Balatsoukas-Stimming and A. Burg, "Faulty successive cancellation decoding of polar codes for the binary erasure channel," IEEE Transactions on Communications, Dec. 2017
- 8 A. Balatsoukas-Stimming and A. Burg, "Density evolution for min-sum decoding of LDPC codes under unreliable message storage," IEEE Communications Letters, May 2014
- J. Mu, A. Vosoughi, J. Andrade, A. Balatsoukas-Stimming, G. Karakonstantis, A. Burg, G. Falcao, V. Silva, and J. R. Cavallaro, "The impact of faulty memory bit cells on the decoding of spatially-coupled LDPC codes," in Asilomar Conference on Signals, Systems, and Computers, Nov. 2015

Throughput-Oriented Construction of Polar Codes

- Some SC decoding computations can be skipped for frozen bit groups
- Throughput of SC decoding depends on distribution of frozen bits

Throughput-Oriented Construction of Polar Codes

- Some SC decoding computations can be skipped for frozen bit groups
- Throughput of SC decoding depends on distribution of frozen bits
- Idea: maximize a weighted sum of the throughput and a performance metric
 - Integer linear program → greedy algorithm

Throughput-Oriented Construction of Polar Codes

- Some SC decoding computations can be skipped for frozen bit groups
- Throughput of SC decoding depends on distribution of frozen bits
- Idea: maximize a weighted sum of the throughput and a performance metric
 - Integer linear program → greedy algorithm

Numerous complexity-performance trade-offs

- Binary Erasure Channel (BEC):
 - Input: 0 or 1
 - Output: equal to the input with probability
 - $1-\mathit{p},$ equal to ? with probability p

- Binary Erasure Channel (BEC):
 - Input: 0 or 1
 - Output: equal to the input with probability
 - 1-p, equal to ? with probability p
- Decoding over the BEC:
 - Update rules:

 $f(a_i, a_j)$: output is ? if at least one input is ? $g(a_i, a_j)$: output is ? if both inputs are ?

- Binary Erasure Channel (BEC):
 - Input: 0 or 1
 - Output: equal to the input with probability
 - 1-p, equal to ? with probability p
- Decoding over the BEC:
 - Update rules:

```
f(a_i, a_j): output is ? if at least one input is ? g(a_i, a_j): output is ? if both inputs are ?
```

• What is the erasure probability for each bit?

- Binary Erasure Channel (BEC):
 - Input: 0 or 1
 - **Output**: equal to the input with probability
 - 1-p, equal to ? with probability p
- Decoding over the BEC:

Update rules:

 $f(a_i, a_j)$: output is ? if at least one input is ? $g(a_i, a_j)$: output is ? if both inputs are ?

• What is the erasure probability for each bit?

Density Evolution

- Erasure probability at f nodes: $T^{f}(\epsilon) = 2\epsilon \epsilon^{2}$
- Erasure probability at g nodes: $T^g(\epsilon) = \epsilon^2$

• We describe failures in a memory cell as unreliable computations

Fault model

Additional erasures appear in **non-erased** outputs with probability $0 < \delta < 1$

• We describe failures in a memory cell as unreliable computations

Fault model

Additional erasures appear in **non-erased** outputs with probability $0 < \delta < 1$

Density Evolution

- Erasure probability at f nodes: $T^{f}(\epsilon) = 2\epsilon \epsilon^{2} + (1 2\epsilon + \epsilon^{2})\delta$
- Erasure probability at g nodes: $T^{g}(\epsilon) = \epsilon^{2} + (1 \epsilon^{2})\delta$

• We describe failures in a memory cell as unreliable computations

Fault model

Additional erasures appear in **non-erased** outputs with probability $0 < \delta < 1$

Density Evolution

- Erasure probability at f nodes: T^f(ε) = 2ε − ε² + (1 − 2ε + ε²)δ
- Erasure probability at g nodes: $T^{g}(\epsilon) = \epsilon^{2} + (1 \epsilon^{2})\delta$
- Polarization process:

$$\epsilon_{j+1} = \begin{cases} T^f(\epsilon_j) & \text{w.p. } 1/2, \\ T^g(\epsilon_j) & \text{w.p. } 1/2, \end{cases} \quad \epsilon_0 = p.$$

• We describe failures in a memory cell as unreliable computations

Fault model

Additional erasures appear in **non-erased** outputs with probability $0 < \delta < 1$

Density Evolution

- Erasure probability at f nodes: T^f(ε) = 2ε − ε² + (1 − 2ε + ε²)δ
- Erasure probability at g nodes: $T^{g}(\epsilon) = \epsilon^{2} + (1 \epsilon^{2})\delta$
- Polarization process:

$$\epsilon_{j+1} = \begin{cases} T^f(\epsilon_j) & \text{w.p. } 1/2, \\ T^g(\epsilon_j) & \text{w.p. } 1/2, \end{cases} \quad \epsilon_0 = p.$$

Theorem (All channels become asymptotically useless)

Under faulty SC decoding over the BEC, $\epsilon_j \xrightarrow{a.s.} 1$.

Improving robustness: Optimal Blocklength

- Two conflicting processes as the blocklength is increased:
 - **1** Polarization tends to decrease the FER
 - **2** Internal erasures tend to increase the FER (asymptotically dominate)

Improving robustness: Optimal Blocklength

- Two conflicting processes as the blocklength is increased:
 - 1 Polarization tends to decrease the FER
 - **2** Internal erasures tend to increase the FER (asymptotically dominate)
- User upper and lower bounds to find FER-optimal (finite) blocklength.

Improving robustness: Optimal Blocklength

- Two conflicting processes as the blocklength is increased:
 - 1 Polarization tends to decrease the FER
 - **2** Internal erasures tend to increase the FER (asymptotically dominate)
- User upper and lower bounds to find FER-optimal (finite) blocklength.

• Concept: Nodes closer to the root contribute more to the erasure rate reduction

- Concept: Nodes closer to the root contribute more to the erasure rate reduction
- Protect $n_p = (n + 1) n_u$ levels for n_u fixed: protected fraction is **constant**

- Concept: Nodes closer to the root contribute more to the erasure rate reduction
- Protect $n_p = (n + 1) n_u$ levels for n_u fixed: protected fraction is **constant**

Theorem (Full reliability by protecting a constant fraction of the decoder)

() For any fixed $n_u < n + 1$, ϵ_j converges a.s. to a random variable $\epsilon_{\infty} \in \{0, 1\}$.

- Concept: Nodes closer to the root contribute more to the erasure rate reduction
- Protect $n_p = (n + 1) n_u$ levels for n_u fixed: protected fraction is **constant**

Theorem (Full reliability by protecting a constant fraction of the decoder)

- **()** For any fixed $n_u < n + 1$, ϵ_j converges a.s. to a random variable $\epsilon_{\infty} \in \{0, 1\}$.
- **2 Rate loss**: $P(\epsilon_{\infty} = 0) = (1 \delta)^{n_u} (1 p)$

mult. penalty BEC cap.

- Concept: Nodes closer to the root contribute more to the erasure rate reduction
- Protect $n_p = (n + 1) n_u$ levels for n_u fixed: protected fraction is **constant**

Theorem (Full reliability by protecting a constant fraction of the decoder)

() For any fixed $n_u < n + 1$, ϵ_j converges a.s. to a random variable $\epsilon_{\infty} \in \{0, 1\}$.

2 *Rate loss:* $P(\epsilon_{\infty} = 0) = (1 - \delta)^{n_u} (1 - p)$

% of protected MEs:

•
$$n_{\rm p} = 0$$
 : 0.00%

• $n_{\rm p} = n + 1 : 100.00\%$

- Concept: Nodes closer to the root contribute more to the erasure rate reduction
- Protect $n_p = (n + 1) n_u$ levels for n_u fixed: protected fraction is **constant**

Theorem (Full reliability by protecting a constant fraction of the decoder)

() For any fixed $n_u < n + 1$, ϵ_j converges a.s. to a random variable $\epsilon_{\infty} \in \{0, 1\}$.

2 *Rate loss:* $P(\epsilon_{\infty} = 0) = (1 - \delta)^{n_u} (1 - p)$

- $n_{\rm p} = 0$: 0.00%
- $n_{\rm p} = 1$: 0.05%

•
$$n_{\rm p} = n + 1 : 100.00\%$$

- Concept: Nodes closer to the root contribute more to the erasure rate reduction
- Protect $n_p = (n + 1) n_u$ levels for n_u fixed: protected fraction is **constant**

Theorem (Full reliability by protecting a constant fraction of the decoder)

- **()** For any fixed $n_u < n + 1$, ϵ_j converges a.s. to a random variable $\epsilon_{\infty} \in \{0, 1\}$.
- **2 Rate loss**: $P(\epsilon_{\infty} = 0) = (1 \delta)^{n_u} (1 p)$

- $n_{\rm p} = 0$: 0.00%
- $n_{\rm p} = 1$: 0.05%
- $n_{\rm p} = 2:$ 0.15%

```
• n_{\rm p} = n + 1 : 100.00\%
```


- **Concept:** Nodes closer to the root contribute more to the erasure rate reduction
- Protect $n_p = (n+1) n_u$ levels for n_u fixed: protected fraction is **constant**

Theorem (**Full reliability** by protecting a **constant fraction** of the decoder)

1 For any fixed $n_{ij} < n + 1$, ϵ_i converges a.s. to a random variable $\epsilon_{\infty} \in \{0, 1\}$.

2 *Rate loss:*
$$P(\epsilon_{\infty} = 0) = (1 - \delta)^{n_u} (1 - p)$$

- $n_{\rm p} = 0$: 0.00%
- $n_{\rm p} = 1$: 0.05%

•
$$n_{\rm p} = 2$$
: 0.15%

•
$$n_{\rm p} = 3:$$
 0.34%

•
$$n_{\rm p} = n + 1 : 100.00\%$$

- Concept: Nodes closer to the root contribute more to the erasure rate reduction
- Protect $n_{\rm p} = (n+1) n_{\rm u}$ levels for $n_{\rm u}$ fixed: protected fraction is constant

Theorem (**Full reliability** by protecting a **constant fraction** of the decoder)

1 For any fixed $n_{ij} < n + 1$, ϵ_i converges a.s. to a random variable $\epsilon_{\infty} \in \{0, 1\}$.

2 *Rate loss:*
$$P(\epsilon_{\infty} = 0) = (1 - \delta)^{n_u} (1 - p)$$

- $n_{\rm p} = 0$: 0.00%
- $n_{\rm p} = 1$: 0.05%
- $n_{\rm p} = 2$: 0.15%
- $n_{\rm p} = 3$: 0.34%
- $n_{\rm p} = 4$: 0.73%

•
$$n_{\rm p} = n + 1 : 100.00\%$$

- Concept: Nodes closer to the root contribute more to the erasure rate reduction
- Protect $n_p = (n + 1) n_u$ levels for n_u fixed: protected fraction is **constant**

Theorem (Full reliability by protecting a constant fraction of the decoder)

() For any fixed $n_u < n + 1$, ϵ_j converges a.s. to a random variable $\epsilon_{\infty} \in \{0, 1\}$.

2 Rate loss:
$$P(\epsilon_{\infty} = 0) = (1 - \delta)^{n_u} (1 - p)$$

% of protected MEs:

- $n_{\rm p} = 0$: 0.00%
- $n_{\rm p} = 1$: 0.05%
- $n_{\rm p} = 2$: 0.15%
- $n_{\rm p} = 3$: 0.34%
- $n_{\rm p} = 4$: 0.73%

•
$$n_{\rm p} = 5$$
: 1.51%

• $n_{\rm p} = n + 1 : 100.00\%$

- Concept: Nodes closer to the root contribute more to the erasure rate reduction
- Protect $n_{\rm p} = (n+1) n_{\rm u}$ levels for $n_{\rm u}$ fixed: protected fraction is constant

Theorem (**Full reliability** by protecting a **constant fraction** of the decoder)

1 For any fixed $n_{ij} < n + 1$, ϵ_i converges a.s. to a random variable $\epsilon_{\infty} \in \{0, 1\}$.

2 *Rate loss:*
$$P(\epsilon_{\infty} = 0) = (1 - \delta)^{n_u} (1 - p)$$

- $n_{\rm p} = 0$: 0.00%
- $n_{\rm p} = 1$: 0.05%
- $n_{\rm p} = 2$: 0.15%
- $n_{\rm p} = 3$: 0.34%
- $n_{\rm p} = 4$: 0.73%
- $n_{\rm p} = 5$: 1.51%
- $n_{\rm p} = n + 1 : 100.00\%$

Outline

1 Classical algorithm/hardware co-design:

- Hardware implementation of successive cancellation list decoding of polar codes
- Successive cancellation flip decoding of polar codes & its hardware implementation

Ø Approximate computing:

- Throughput-oriented construction of polar codes
- Error-correction coding on faulty hardware

③ Communications hardware meets information theory and machine learning:

- Terabit/s LDPC hardware decoders via quantized message passing
- Neural networks for self-interference cancellation in full-duplex radios

Min-Sum Decoding of LDPC Codes

 LDPC codes are linear block codes with a sparse parity-check matrix

Min-Sum Decoding of LDPC Codes

- LDPC codes are linear block codes with a sparse parity-check matrix
- An LDPC code can be represented as a Tanner graph with:
 - Variable nodes (VNs)
 - Check nodes (CNs)

Min-Sum Decoding

Variable-to-check messages: $\Phi_v(L, \mu) = L + \sum_i \mu_i$, Check-to-variable messages: $\Phi_c(\mu) = \prod_j \operatorname{sign} \mu_j \min |\mu|$.

Finite-Alphabet Message Passing Decoding

• In hardware implementations of MS decoding, uniform quantization is used.

Finite-Alphabet Message Passing Decoding

• In hardware implementations of MS decoding, uniform quantization is used.

Conventional Message-Passing

Decoding Algorithm \longrightarrow Quantization

• Efficient arithmetic circuits, but suboptimal error-correcting performance.

Finite-Alphabet Message Passing Decoding

• In hardware implementations of MS decoding, uniform quantization is used.

Conventional Message-Passing

Decoding Algorithm \longrightarrow Quantization

• Efficient arithmetic circuits, but suboptimal error-correcting performance.

Finite-Alphabet Message-Passing

Quantization \longrightarrow Decoding Algorithm

- Updates are implemented as optimized look-up tables (LUTs).
- Potential for significant bit-width reduction and performance improvement.
- R. Ghanaatian, A. Balatsoukas-Stimming, C. Müller, M. Meidlinger, G. Matz, A. Teman, and A. Burg, "A 588 Gbps LDPC decoder based on finite-alphabet message passing," IEEE Transactions on Very Large Scale Integration Systems, Feb. 2018
- M. Meidlinger, A. Balatsoukas-Stimming, A. Burg, and G. Matz, "Quantized message passing for LDPC codes," in Asilomar Conference on Signals, Systems, and Computers, May 2015
- 8 A. Balatsoukas-Stimming, M. Meidlinger, R. Ghanaatian, G. Matz, and A. Burg, "A fully-unrolled LDPC decoder based on quantized message passing," in IEEE International Workshop on Signal Processing Systems (SiPS), Oct. 2015

• Our method is based on an information theoretic criterion.

LUT Design Principle

Local maximization of mutual information between messages and codeword bits.

• Our method is based on an information theoretic criterion.

LUT Design Principle

Local maximization of mutual information between messages and codeword bits.

• Our method is based on an information theoretic criterion.

LUT Design Principle

Local maximization of mutual information between messages and codeword bits.

• Our method is based on an information theoretic criterion.

LUT Design Principle

Local maximization of mutual information between messages and codeword bits.

• Our method is based on an information theoretic criterion.

LUT Design Principle

Local maximization of mutual information between messages and codeword bits.

• Our method is based on an information theoretic criterion.

LUT Design Principle

Local maximization of mutual information between messages and codeword bits.

Fully Unrolled LDPC Decoder Hardware Architecture

• One CN stage and one VN stage per iteration: $2I_{max}$ pipeline stages.

Fully Unrolled LDPC Decoder Hardware Architecture

• One CN stage and one VN stage per iteration: $2I_{max}$ pipeline stages.

	Quant. MS	LUT-based	
Area (mm ²)	35.63	33.79	-5%
Throughput (Gbps)	1014	1665	+64%
Area Eff. (Gbps/mm ²)	28.46	49.27	+73%

Bi-directional Wireless Communications

Time-division duplexing (TDD) Wasted time resources: switching interval

Frequency-division duplexing (FDD) Wasted frequency resources: guard bands

In-Band Full-duplex (IBFD)

Up to twice the throughput wrt TDD & FDD! No additional bandwidth No wasted time or frequency resources

Bi-directional Wireless Communications

Time-division duplexing (TDD) Wasted time resources: switching interval

Frequency-division duplexing (FDD) Wasted frequency resources: guard bands

In-Band Full-duplex (IBFD)

Up to twice the throughput wrt TDD & FDD! No additional bandwidth No wasted time or frequency resources

Fundamental Challenge: Self-interference is much stronger than the desired signal!

• In principle, cancellation is easy since digital transmitted signal is known!

- In principle, cancellation is easy since digital transmitted signal is known!
- In practice, the digital signal does not tell the whole story!

- In principle, cancellation is easy since digital transmitted signal is known!
- In practice, the digital signal does not tell the whole story!
 - Analog components introduce non-linearities that make digital cancellation difficult

- In principle, cancellation is easy since digital transmitted signal is known!
- In practice, the digital signal does not tell the whole story!
 - Analog components introduce non-linearities that make digital cancellation difficult
- Consider a state-of-the-art non-linear cancellation model:

$$y(n) = \sum_{\substack{p=1,\ p ext{ odd}}}^{P} \sum_{q=0}^{p} \sum_{m=0}^{M+L-1} h_{p,q}(m) \underbrace{x(n-m)^{q} x^{*}(n-m)^{p-q}}_{ ext{basis functions}}$$

Example

For P = 7 and M + L = 13 memory taps $\rightarrow 20$ basis functions and 260 parameters!

D. Korpi, L. Anttila, and M. Valkama, "Nonlinear self-interference cancellation in MIMO full-duplex transceivers under crosstalk," EURASIP Journal on Wireless Communications and Networking, Feb. 2017

- In principle, cancellation is easy since digital transmitted signal is known!
- In practice, the digital signal does not tell the whole story!
 - Analog components introduce non-linearities that make digital cancellation difficult
- Consider a state-of-the-art non-linear cancellation model:

$$y(n) = \sum_{\substack{p=1, \ p ext{ odd}}}^{P} \sum_{q=0}^{p} \sum_{m=0}^{M+L-1} h_{p,q}(m) \underbrace{x(n-m)^{q} x^{*}(n-m)^{p-q}}_{ ext{ basis functions}}$$

Example

For P = 7 and M + L = 13 memory taps $\rightarrow 20$ basis functions and 260 parameters!

Idea

Why not use a neural network that extracts structure from training data?

- D. Korpi, L. Anttila, and M. Valkama, "Nonlinear self-interference cancellation in MIMO full-duplex transceivers under crosstalk," EURASIP Journal on Wireless Communications and Networking, Feb. 2017
- A. Balatsoukas-Stimming, "Non-linear digital self-interference cancellation for in-band full-duplex radios using neural networks," IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Jun. 2018 (accepted)

Self-Interference Cancellation Using Neural Networks

• Decompose self-interference signal into linear and non-linear part

$$y(n) = \underbrace{y_{\text{lin}}(n)}_{\text{easy!}} + \underbrace{y_{\text{nl}}(n)}_{\text{hard!}}$$

Self-Interference Cancellation Using Neural Networks

• Decompose self-interference signal into linear and non-linear part

$$y(n) = \underbrace{y_{\text{lin}}(n)}_{\text{easy!}} + \underbrace{y_{\text{nl}}(n)}_{\text{hard!}}$$

• Two-step cancellation:

() Use standard linear digital cancellation: $\hat{y}_{\text{lin}}(n) = \sum_{m=0}^{M+L-1} \hat{h}_{1,1}(m) x(n-m)$

Self-Interference Cancellation Using Neural Networks

• Decompose self-interference signal into linear and non-linear part

$$y(n) = \underbrace{y_{\text{lin}}(n)}_{\text{easy!}} + \underbrace{y_{\text{nl}}(n)}_{\text{hard!}}$$

- Two-step cancellation:
 - **0** Use standard linear digital cancellation: $\hat{y}_{\text{lin}}(n) = \sum_{m=0}^{M+L-1} \hat{h}_{1,1}(m)x(n-m)$
 - **2** Train a neural network to reproduce and cancel $y_{nl}(n) \approx y(n) \hat{y}_{lin}(n)$

Experimental Cancellation Results

• 10 MHz OFDM signal, 56 dB passive cancellation, M + L = 13 taps

	Poly.	NN	Improvement
Additions	492	493	0%
Multiplications	741	476	36%

Experimental Cancellation Results

• 10 MHz OFDM signal, 56 dB passive cancellation, M + L = 13 taps

Identical cancellation performance with lower complexity!

Conclusions

- A combination of approaches is necessary to maintain progress in the **post-happy-scaling era**, including:
 - 1 Classical algorithm/hardware co-design
 - **2** Approximate computing
 - 8 Tools from other disciplines

Conclusions

- A combination of approaches is necessary to maintain progress in the **post-happy-scaling era**, including:
 - 1 Classical algorithm/hardware co-design
 - 2 Approximate computing
 - **8** Tools from other disciplines

The end of the happy scaling era creates new **challenges and opportunities** for innovation!

