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The End of the “Happy Scaling” Era
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® Algorithm/hardware co-design is more pertinent than ever
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® Maintaining progress will require cross-layer and interdisciplinary innovation
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Outline

® Classical algorithm/hardware co-design:

m Hardware implementation of successive cancellation list decoding of polar codes
m Successive cancellation flip decoding of polar codes & its hardware implementation

® Approximate computing:

m Throughput-oriented construction of polar codes
m Error-correction coding on faulty hardware

©® Communications hardware meets information theory and machine learning:

m Terabit/s LDPC code decoders via quantized message passing
m Neural networks for self-interference cancellation in full-duplex radios
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Technology Innovations in 5G
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Small Cells and New Radio Frequencies Advanced Channel Codes
Advanced Cellular Concepts (mmWave) (LDPC and polar)
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Polar Codes

A={3,56,7}

OO W D

® Construction:
m Information indices: A C {0,1,...,N — 1}, |[A| = NR, N = 2",
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Polar Codes
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® Construction:
m Information indices: A C {0,1,..., N — 1}, |[A| = NR, N = 2",

® Encoding:
m uy 2 [u,i € A]T + data bits,
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Polar Codes
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® Construction:
m Information indices: A C {0,1,..., N — 1}, |[A| = NR, N = 2",

® Encoding:

muy 2 [ui,i € .A]T < data bits,
m u ¢  known-to-receiver frozen bits (say all-zero).
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Polar Codes

Uz Encoder
Gu

X

® Construction:
m Information indices: A C {0,1,..., N — 1}, |[A| = NR, N = 2",

® Encoding:

muy 2 [ui,i € .A]T < data bits,
® u ¢  known-to-receiver frozen bits (say all-zero).
m x < Gu (using O(N log N) binary additions).
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Polar Codes
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Polar Codes
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m Information indices: A C {0,1,..., N — 1}, |[A| = NR, N = 2",

® Encoding:

muy 2 [ui,i € .A]T < data bits,
m u ¢  known-to-receiver frozen bits (say all-zero).
m x < Gu (using O(N log N) binary additions).

® Decoding: Estimate the information bits ti4.
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Polar Codes
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® Construction:
m Information indices: A C {0,1,..., N — 1}, |[A| = NR, N = 2",

® Encoding:

muy 2 [ui,i € .A]T < data bits,
m u ¢  known-to-receiver frozen bits (say all-zero).
m x < Gu (using O(N log N) binary additions).

® Decoding: Estimate the information bits ti4.

m Successive Cancellation (SC) Decoding: At each level ¢ € A, choose the best
possible value of u; given the past estimations and frozen bits.
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Successive Cancellation Decoding

® Successive traversal of a data dependency graph
® Nlog N nodes, each visited exactly once — O(N log N) time complexity!
® Re-use of memory positions — O(N) memory complexity!
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Successive Cancellation Decoding

® Successive traversal of a data dependency graph

® Nlog N nodes, each visited exactly once — O(N log N) time complexity!

® Re-use of memory positions — O(N) memory complexity!
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® Two simple soft information
update operations:

iai
@
flai, o) = sgn(a;)sgn (o) min (Ja |, o)
Qi
@
P

glai, a5, 1) = aj + (1) a;
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Hardware Implementation of SC Decoding

® Decoder Core: contains P processing elements that implement update rules
® Memories: store soft information, partial sums, and decoded codeword
® Controller: organizes memory reads and writes, and update rule selection

Memories Control
[

Inornal LR fossene i
Memory

LLR In—>  Chamncl LLR 7]zl Decoder [—
Memory 3 Core  |feesabe-d

Partial Sum ]
Memory -
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Bits Out = Path Memory
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Hardware Implementation of SC Decoding

® Decoder Core: contains P processing elements that implement update rules
® Memories: store soft information, partial sums, and decoded codeword
® Controller: organizes memory reads and writes, and update rule selection

Memories Control
[

Internal LLR. i
Memory :
LLR In——>|  Channel LLR W Decoder [~
Memory } Core  |fe=eef--d
Partial Sum f
Memory -

[

Bits Out = Path Memory

® Simple and flexible architecture
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® Compact and energy-efficient

P

£COLE POLYTICHNIQUE 7/30
FEDERALF DF LAUSANE




Hardware Polar Decoders Approximate ECC Decoding |IT and ML meet Hardware Conclusions

Hardware Implementation of SC Decoding

® Decoder Core: contains P processing elements that implement update rules
® Memories: store soft information, partial sums, and decoded codeword
® Controller: organizes memory reads and writes, and update rule selection

Memories Control
[

Internal LLR !
Menory :
LLR In—|  Channel LLR 12| Decoder [—
L Memory 3 Core  |fe=eef--d
Partial Sum f
Momory -

[

Bits Out -t Path Memory

® Simple and flexible architecture

® Compact and energy-efficient

Two main challenges with SC decoding:
® Low throughput due to sequential nature

® Mediocre error-correcting performance due to error propagation
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Successive Cancellation List Decoding

® SC Decoding: past errors can never be corrected
® SCL Decoding: up to L simultaneous paths on the decoding tree
m Time complexity: O(LN log N), Memory complexity: O(LN)

0 I. Tal, A. Vardy, “List decoding of polar codes,” IEEE Transactions on Information Theory, May 2015
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Successive Cancellation List Decoding
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Hardware Implementation of SCL Decoding

What changes w.r.t. SC decoding?
® Perform computations for L paths simultaneously
® Compute and sort path metrics to keep L best paths at each step

(|
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Hardware Implementation of SCL Decoding

What changes w.r.t. SC decoding?
® Perform computations for L paths simultaneously (highly parallelizable!)
® Compute and sort path metrics to keep L best paths at each step

Decoder
ore

a v

What we need:

LLR In — (Thl.\-leml L,LR
® L decoder cores . == ‘\
g
® L SC memories g DETET:
g Nt
© A path metric sorter - TS

Metric
Sorter oxd .

i -
I — Pointer
H -
Bits Out <=L pach Memory 1 Blaiaoy
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Hardware Implementation of SCL Decoding

What changes w.r.t. SC decoding?
® Perform computations for L paths simultaneously
® Compute and sort path metrics to keep L best paths at each step

Decoder [
Core 1

What we need:

Channel LLR
Memory

5
|

|

@® L decoder cores
® L SC memories

Partial Sun |
Memory

Metric
E -
== S LS
Pointer Metric
[ oin - - eLrl
Bits Out -— L Path Memory 1 Memory Sorter I

Memories

® A path metric sorter

We proved an arithmetic re-formulation of SCL decoding that makes the hardware
implementation up to 67% more hardware-efficient!

0 A. Balatsoukas-Stimming, M. Bastani Parizi, A. Burg, “LLR-based successive cancellation list decoding of polar codes,” IEEE Transactions on
Signal Processing, Oct. 2015
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Optimized Metric Sorting for SCL Decoding

® Metric sorter lies on the critical path of SCL decoders

Radix-2 L Sorter Bitonic Sorter Bubble Sorter
] I i [
] L ]
I I | : I I
| Il " T T
A 1 ) | I

P 10730
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Optimized Metric Sorting for SCL Decoding

® Metric sorter lies on the critical path of SCL decoders

® Exploit reformulated metric properties to simplify the sorter:
@ When forking, the L new path metrics are augmented versions of the old L ones
® Just need the L best among 2L, no need for the L best to be sorted

Radix-2 L Sorter Bitonic Sorter Bubble Sorter
_uoz MUX m T ET T h T m ; I
] I i [
] w1l ]
1 I | : | ]
I [ )
A 1 ) | I

FEDERALE DE LAUSANNE
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Optimized Metric Sorting for SCL Decoding

® Metric sorter lies on the critical path of SCL decoders

® Exploit reformulated metric properties to simplify the sorter:
@ When forking, the L new path metrics are augmented versions of the old L ones
® Just need the L best among 2L, no need for the L best to be sorted

Radix-2 L Sorter Bitonic Sorter Bubble Sorter

1 I

2-to-1 MUX

—
SoLjouL
Jso[jels 7

e R my

Significant improvement in the area and operating frequency of the decoder!

@ A. Balatsoukas-Stimming, M. Bastani Parizi, A. Burg, “On metric sorting for successive cancellation list decoding of polar codes,” IEEE
International Symposium on Circuits and Systems, May 2015
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Successive Cancellation Flip Decoding

SCL Decoding

Most of the computations and memory are wasted most of the time!

(|
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Successive Cancellation Flip Decoding

SCL Decoding

Most of the computations and memory are wasted most of the time!

® Observation: Under SC, most faulty frames are the result of one wrong decision

ED/NO = 1.5 dB|
I E/NO = 2.0 dB|
I Eb/NO = 2.5 dB|

Relative frequency

2 3
Number of errors.
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Successive Cancellation Flip Decoding

SCL Decoding

Most of the computations and memory are wasted most of the time!

® Observation: Under SC, most faulty frames are the result of one wrong decision

ED/NO = 1.5 dB|
I E/NO = 2.0 dB|
I Eb/NO = 2.5 dB|

® Successive Cancellation Flip (SCF)
decoding:
@ Perform SC decoding and track T most
unreliable decisions
® Use a CRC to identify erroneous decoding
©® Re-run SC up to T times, each time flipping
the most unreliable decision

Relative frequency
o

2 3 4
Number of errors.

0 O. Afisiadis, A. Balatsoukas-Stimming, and A. Burg, “A low-complexity improved successive cancellation decoder for polar codes,” in Asilomar
Conf. on Signals, Systems, and Computers, Nov. 2014
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Successive Cancellation Flip Decoding

SCL Decoding

Most of the computations and memory are wasted most of the time!

® Observation: Under SC, most faulty frames are the result of one wrong decision

I EO/NO = 1.5 dB
I Eb/NO = 2.0 dB
P ® Successive Cancellation Flip (SCF)
decoding:
@ Perform SC decoding and track T most
unreliable decisions
® Use a CRC to identify erroneous decoding
©® Re-run SC up to T times, each time flipping
the most unreliable decision

2 3 4
Number of errors.

Error-correcting performance in-between SC and SCL, but:
® Memory complexity of SC decoding
® (Average) time complexity of SC decoding (at high SNR)

0 O. Afisiadis, A. Balatsoukas-Stimming, and A. Burg, “A low-complexity improved successive cancellation decoder for polar codes,” in Asilomar
Conf. on Signals, Systems, and Computers, Nov. 2014
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Hardware Implementation of SCF Decoding

® Simple: Add an insertion sorter and a CRC unit to an SC decoder

Memorics Control Memories Control
Internal LLR Internal LLR
Memory f
{ Y
LLR In—] Channel LLR — Decoder [— LLR Tn —F Channel LLR 3 Decoder [
Meuory | | Core  fe-erf - Memory 21 Core |-
K 1
! Portial Sum | !
Memory |
5
I 7,
i Out = L T

o
o

Negligible area overhead! },
No impact on latency! ¥ﬁ‘\ }
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Hardware Implementation of SCF Decoding
® Simple: Add an insertion sorter and a CRC unit to an SC decoder

Control

Memories Control Memories
oee—
Internal LLR Internal LLR o
Memory R Memory
3 n—] Channel LLR ™ Decoder [~ | Channel LLR Decoder
LLR I —»7 deoder 17 |.. LLR In e fRi;
K
Partial Sum ! Partial Sum | !
Memory Memory f
3
[ 3
3
Bits Out = Path Memory Bits Out =] Path Memory ¢
K
gy
A -
|

Negligible area overhead!
e

No impact on latency!

Our proposed SCF decoding algorithm is being considered by the 3GPP as an
ultra-low power option for massive machine type communications for loT in 5G

c Huawei and HiSilicon, “Computational and implementation complexity of channel coding schemes,” 3GPP TSG RAN WG1 Meeting #86

Tech. Rep. R1-167213, Aug. 2016
12/30
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Bringing It All Together

® POLARBEAR: Manufactured ASIC in ST 28 nm FD-SOI
m SC, SCF, and SCL decoding on the same chip
m Run-time algorithm selection for energy-proportional operation

2208 sCFonly
[ Al Modes

225 7
200 |-
2175
=
2 150 ;
st : 8
z 125 1%, iy d .
2 100 -4 o
I~
%
3
5| Metric Computation
0 i i 0 i i = Docoder
Va Vo Y3 a3 Va Y2 Y3 s Sfe ot
Code Rate R Code Rate R LLR I — T
SC ¢ — i
SCF: == @FER= 102 —A— @FER= 10" Pt S s
SCL: —4— L=2 - L=4
Address Metric

Menmories Translation Sorting

Control

0 P. Giard, A. Balatsoukas-Stimming, C. Miiller, A. Bonetti, C. Thibeault, W. J. Gross, P. Flatresse, A. Burg, “POLARBEAR: A 28-nm FD-SOI
ASIC for decoding of polar codes,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Dec. 2017
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VLSI Circuits are Becoming Unreliable

——write byte 100,

20 —0— write nibble % area memory in SoC
0 write bit %0
15 _._:::: mobe Prediction SIA Roadmap
R{ 7| —a—readbit 80 Infineon MPSCO 2004,
g . 70
- 4
[T 2 \\\ o
g ) - ‘\;\ SN | oA
Technology Node (1m) A Asenov, TEDD ) %

Prediction Semico Research Corp.
© @ 160 170 180 190 200 210 ASIC IP Report 2007
Process variation

Vga (mV)
[K. Roy et al., 2010] Soft-errors [B. Zhai et al., 2008]

2000 '02 ‘04 06 08 10 12 ‘14 '16

® Devices suffer from defects due to parameter variations and “soft errors’

® These issues compromise reliable operation and prevent effective
power-reduction techniques (e.g., voltage scaling)
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VLSI Circuits are Becoming Unreliable

day Source:ntel

#dopant atoms

Technology Node (nm) A Asenov, TED03

©
Process variation
[K. Roy et al., 2010]

——write byte
20—~ wite nibble
—/— write bit

| —m—read byte
15.|—8—read nibble
—a—read bit

Error Rate (%)

A\
N

"\\: \:\5

160 170 180 19 200 210

Vga (mV)
Soft-errors [B. Zhai et al., 2008]
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501 ---
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30

% area memory in SoC
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Infineon MPSCO 2004,

Prediction Semico Research Corp.
ASIC IP Report 2007

2000 '02 04 06 08 10 12 14 16

® Devices suffer from defects due to parameter variations and “soft errors”

® These issues compromise reliable operation and prevent effective

power-reduction techniques (e.g., voltage scaling)

® Memories are particularly sensitive to process variations and dominate area

and power consumption of modern systems-on-chip
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VLSI Circuits are Becoming Unreliable

——write byte 100,

20 —0— write nibble % area memory in SoC
0 write bit %
s el i Prediction SIA Roadmap g~
R{ 7| —a—readbit 80 Infineon MPSCO 2004, 7
e
3 . 70
@ 10
) 5 \ w /
£ 2 X s
£ ol 5 \ \ 50f---- 7+
® s N R /
Tochn SRS 40 /

Prediction Semico Research Corp.
ASIC IP Report 2007

© @ 160 170 180 190 200 210
Process variation

Vaa (mV) ©
[K. Roy et al., 2010] Soft-errors [B. Zhai et al., 2008]

2000 '02 04 06 08 10 12 14 16

® Devices suffer from defects due to parameter variations and “soft errors”

® These issues compromise reliable operation and prevent effective
power-reduction techniques (e.g., voltage scaling)

® Memories are particularly sensitive to process variations and dominate area
and power consumption of modern systems-on-chip

What to do?

® Hardware protection to avoid errors is costly in terms of area and power

® Discarding faulty chips can decrease the yield dramatically
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Approximate Computing

® Fortunately, many applications deal with data that is already stochastic and/or
degrade gracefully when data is corrupted
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Approximate Computing

® Fortunately, many applications deal with data that is already stochastic and/or
degrade gracefully when data is corrupted

® Inherent application resilience can also be exploited for algorithmic
simplifications
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Approximate Computing

® Fortunately, many applications deal with data that is already stochastic and/or
degrade gracefully when data is corrupted

® Inherent application resilience can also be exploited for algorithmic
simplifications

Example: error-correcting codes
® Throughput-oriented construction of polar codes
® Faulty successive cancellation decoding of polar codes
® Faulty min-sum decoding of LDPC codes
® Faulty windowed min-sum decoding of spatially-coupled LDPC codes

o A. Balatsoukas-Stimming, G. Karakonstantis, A. Burg, “Enabling complexity-performance trade-offs for successive cancellation decoding of
polar codes,” International Symposium on Information Theory (ISIT), Jun. 2014
@ A. Balatsoukas-Stimming and A. Burg, "Faulty successive cancellation decoding of polar codes for the binary erasure channel," IEEE

Transactions on Communications, Dec. 2017
© A Balatsoukas-Stimming and A. Burg, "Density evolution for min-sum decoding of LDPC codes under unreliable message storage," IEEE

Communications Letters, May 2014

@ ). Mu, A. Vosoughi, J. Andrade, A. Balatsoukas-Stimming, G. Karakonstantis, A. Burg, G. Falcao, V. Silva, and J. R. Cavallaro, "The impact
of faulty memory bit cells on the decoding of spatially-coupled LDPC codes," in Asilomar Conference on Signals, Systems, and Computers,
Nov. 2015
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Approximate Computing

Fortunately, many applications deal with data that is already stochastic and/or
degrade gracefully when data is corrupted

Inherent application resilience can also be exploited for algorithmic
simplifications

Example: error-correcting codes

(1)
(2]
(3]
(4]

Throughput-oriented construction of polar codes

Faulty successive cancellation decoding of polar codes

Faulty min-sum decoding of LDPC codes

Faulty windowed min-sum decoding of spatially-coupled LDPC codes

A. Balatsoukas-Stimming, G. Karakonstantis, A. Burg, “Enabling complexity-performance trade-offs for successive cancellation decoding of
polar codes,” International Symposium on Information Theory (ISIT), Jun. 2014

A. Balatsoukas-Stimming and A. Burg, "Faulty successive cancellation decoding of polar codes for the binary erasure channel," IEEE
Transactions on Communications, Dec. 2017

A. Balatsoukas-Stimming and A. Burg, "Density evolution for min-sum decoding of LDPC codes under unreliable message storage," IEEE
Communications Letters, May 2014

J. Mu, A. Vosoughi, J. Andrade, A. Balatsoukas-Stimming, G. Karakonstantis, A. Burg, G. Falcao, V. Silva, and J. R. Cavallaro, "The impact
of faulty memory bit cells on the decoding of spatially-coupled LDPC codes," in Asilomar Conference on Signals, Systems, and Computers,
Nov. 2015
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Throughput-Oriented Construction of Polar Codes

'i[.gé;_ﬁiia_@i ® Some SC decoding computations can be
TR EPN ol skipped for frozen bit groups

iy = 0—— @—et— © P ® Throughput of SC decoding depends on
ug:(rmgf‘ff © vs distribution of frozen bits

i = ay : - vs

6 = a» T R M v

I)
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Throughput-Oriented Construction of Polar Codes

‘,“1“4; . ® ° . ® Some SC decoding computations can be
- . ol skipped for frozen bit groups

=0 @t @ v ® Throughput of SC decoding depends on

i3 = o ——p—e—b——@ us distribution of frozen bits

5 = a1 e ® |dea: maximize a weighted sum of the

6 = 43— e ve throughput and a performance metric

B 1 3 v m Integer linear program — greedy algorithm
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Throughput-Oriented Construction of Polar Codes

‘,"i[,gg;_s’ri ® a_(_uyﬂ ® Some SC decoding computations can be

PSSP ol . skipped for frozen bit groups

iz = 0— Qe —— v ® Throughput of SC decoding depends on

ua:(rmgf‘ff © vs distribution of frozen bits

iy =0 G n e

5 = a1 e ® |dea: maximize a weighted sum of the

it6 = 2 —— SREEENTS I vs throughput and a performance metric

ir =t L v m Integer linear program — greedy algorithm
Numerous complexity-performance trade-offs Minimal performance degradation

12

Complexity (operations per bit)

7 ook
¥ 2
el
6 + X ey ¢ H
* oo o md® 1 2 3 4 1 2 3 4
s : Ey/No (dB) Ey/No (dB)
. Original: Altered:
07 075 08 085 09 0.95 1 e 1024 342)
Average Frozen Channel Mutual Information (bits/ch. use) 1024 | ‘4‘ s|>
cae a0 (1024,512)
O QB o (2048,683)
) e QO48,1024) e (2048,1024)
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Polar Codes over the Binary Erasure Channel

® Binary Erasure Channel (BEC):
m Input: Oor 1
= Output: equal to the input with probability
1 — p, equal to ? with probability p
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Polar Codes over the Binary Erasure Channel

® Binary Erasure Channel (BEC):
m Input: Oor 1
= Output: equal to the input with probability
1 — p, equal to 7 with probability p

® Decoding over the BEC:
= Update rules:
f(ai, a;): output is ? if at least one input is ?
g(ai, a;): output is ? if both inputs are ?
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Polar Codes over the Binary Erasure Channel

® Binary Erasure Channel (BEC):

m Input: Oor 1
= Output: equal to the input with probability
1 — p, equal to 7 with probability p

® Decoding over the BEC:
= Update rules:
f(ai, a;): output is ? if at least one input is ?
g(ai, a;): output is ? if both inputs are ?

® What is the erasure probability for each bit?
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Polar Codes over the Binary Erasure Channel

® Binary Erasure Channel (BEC):

A level level level level
m Input: Oor 1 0 1 2 3

= Output: equal to the input with probability v -l -l A R
1 — p, equal to ? with probabilit
P, eq p! y p v2 -l -H -’
v -l -M
[ ] 1 .
Decoding over the BEC: vi B B
= Update rules:
f(ai, a;): output is ? if at least one input is ? ys -l
g(ai, a;): output is ? if both inputs are ? |
vy -
® What is the erasure probability for each bit? ys -H

Density Evolution
® Erasure probability at f nodes: 77(e) = 2¢ — ¢
® Erasure probability at g nodes: T9(e) = €

FEDERALE DE LAUSANNE
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Density evolution for faulty SC decoding
® \We describe failures in a memory cell as unreliable computations

Fault model

Additional erasures appear in non-erased outputs with probability 0 < § < 1

(|

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

18/30



Hardware Polar Decoders Approximate ECC Decoding T and ML meet Hardware Conclusions

Density evolution for faulty SC decoding

® \We describe failures in a memory cell as unreliable computations

Fault model

Additional erasures appear in non-erased outputs with probability 0 < § < 1

Density Evolution
® Erasure probability at f nodes: 77(e) = 2e — € + (1 — 2¢ + €%)d
® Erasure probability at g nodes: T9(¢) = ¢* 4 (1 — ¢2)§
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Density evolution for faulty SC decoding

® \We describe failures in a memory cell as unreliable computations

Fault model

Additional erasures appear in non-erased outputs with probability 0 < § < 1

Density Evolution
® Erasure probability at f nodes: 77(e) = 2e — € + (1 — 2¢ + €2)
® Erasure probability at g nodes: T9(¢) = ¢* 4 (1 — €2)§

® Polarization process:

_JTg) wp 1/2 _
G = {Tg(ej) wp. 172, OTF
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Density evolution for faulty SC decoding
® \We describe failures in a memory cell as unreliable computations

Fault model

Additional erasures appear in non-erased outputs with probability 0 < § < 1

Density Evolution
® Erasure probability at f nodes: 77(e) = 2e — € + (1 — 2¢ + €2)
® Erasure probability at g nodes: T9(¢) = ¢* 4 (1 — €2)§

® Polarization process:
_JTg) wp 1/2 _
G = {Tg(ej) wp. 172, OTF
Theorem (All channels become asymptotically useless)

Under faulty SC decoding over the BEC, ¢; 1,
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Improving robustness: Optimal Blocklength

® Two conflicting processes as the blocklength is increased:
@ Polarization tends to decrease the FER
® Internal erasures tend to increase the FER (asymptotically dominate)
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Improving robustness: Optimal Blocklength

® Two conflicting processes as the blocklength is increased:
@ Polarization tends to decrease the FER
® Internal erasures tend to increase the FER (asymptotically dominate)

® User upper and lower bounds to find FER-optimal (finite) blocklength.
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Improving robustness: Optimal Blocklength

® Two conflicting processes as the blocklength is increased:
@ Polarization tends to decrease the FER
® Internal erasures tend to increase the FER (asymptotically dominate)

® User upper and lower bounds to find FER-optimal (finite) blocklength.

100 g T E| Ei
F —@— R = 0.1250 (UB)
H - m- R=0.1250 (LB)
10_1i —@— R = 0.1875 (UB)
- - R=0.1875 (LB)
—&A— R = 0.2500 (UB)

—2
10 2500 (LB)

Frame Erasure Rate

1 | 1
4 6 8 10 12

Logarithm of Blocklength (n)
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Error-free transmission via unequal error protection

® Concept: Nodes closer to the root contribute more to the erasure rate reduction
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Error-free transmission via unequal error protection

® Concept: Nodes closer to the root contribute more to the erasure rate reduction
® Protect np, = (n + 1) — ny levels for n, fixed: protected fraction is constant
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Error-free transmission via unequal error protection

® Concept: Nodes closer to the root contribute more to the erasure rate reduction
® Protect n, = (n+ 1) — ny levels for n, fixed: protected fraction is constant

Theorem (Full reliability by protecting a constant fraction of the decoder)

@ For any fixed n, < n+ 1, ¢; converges a.s. to a random variable ex, € {0,1}.
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Error-free transmission via unequal error protection

® Concept: Nodes closer to the root contribute more to the erasure rate reduction
® Protect n, = (n+ 1) — ny levels for n, fixed: protected fraction is constant
Theorem (Full reliability by protecting a constant fraction of the decoder)
@ For any fixed n, < n+ 1, ¢; converges a.s. to a random variable ex, € {0,1}.
® Rate loss: P(ecc =0) = (1—0)" (1 - p)
S——

mult. penalty BEC cap.
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Error-free transmission via unequal error protection

® Concept: Nodes closer to the root contribute more to the erasure rate reduction
® Protect n, = (n+ 1) — ny levels for n, fixed: protected fraction is constant
Theorem (Full reliability by protecting a constant fraction of the decoder)
@ For any fixed n, < n+ 1, ¢; converges a.s. to a random variable ex, € {0,1}.
® Rate loss: P(ecc =0) = (1—0)"™ (1 - p)
—

mult. penalty BEC cap.

T
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Error-free transmission via unequal error protection

® Concept: Nodes closer to the root contribute more to the erasure rate reduction
® Protect n, = (n+ 1) — ny levels for n, fixed: protected fraction is constant
Theorem (Full reliability by protecting a constant fraction of the decoder)
@ For any fixed n, < n+ 1, ¢; converges a.s. to a random variable ex, € {0,1}.
® Rate loss: P(ecc =0) = (1—0)"™ (1 - p)
—

mult. penalty BEC cap.
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Error-free transmission via unequal error protection

® Concept: Nodes closer to the root contribute more to the erasure rate reduction
® Protect n, = (n+ 1) — ny levels for n, fixed: protected fraction is constant

Theorem (Full reliability by protecting a constant fraction of the decoder)

@ For any fixed n, < n+ 1, ¢; converges a.s. to a random variable ex, € {0,1}.
® Rate loss: P(ecc =0) = (1—0)"™ (1 - p)
—

mult. penalty BEC cap.
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Error-free transmission via unequal error protection
® Concept: Nodes closer to the root contribute more to the erasure rate reduction
® Protect n, = (n+ 1) — ny levels for n, fixed: protected fraction is constant
Theorem (Full reliability by protecting a constant fraction of the decoder)
@ For any fixed n, < n+ 1, ¢; converges a.s. to a random variable ex, € {0,1}.
® Rate loss: P(ecc =0) = (1—0)"™ (1 - p)
—— N~

mult. penalty BEC cap.
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Error-free transmission via unequal error protection

® Concept: Nodes closer to the root contribute more to the erasure rate reduction

® Protect n, = (n+ 1) — ny levels for n, fixed: protected fraction is constant

Theorem (Full reliability by protecting a constant fraction of the decoder)

@ For any fixed n, < n+ 1, ¢; converges a.s. to a random variable ex, € {0,1}.
® Rate loss: P(ecc =0)=(1—06)™(1—
——

mult. penalty BEC cap.
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Error-free transmission via unequal error protection

® Concept: Nodes closer to the root contribute more to the erasure rate reduction

® Protect n, = (n+ 1) — ny levels for n, fixed: protected fraction is constant

Theorem (Full reliability by protecting a constant fraction of the decoder)

@ For any fixed n, < n+ 1, ¢; converges a.s. to a random variable ex, € {0,1}.
® Rate loss: P(ecc =0)=(1—06)™(1—
——

mult. penalty BEC cap.
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Error-free transmission via unequal error protection

® Concept: Nodes closer to the root contribute more to the erasure rate reduction

® Protect n, = (n+ 1) — ny levels for n, fixed: protected fraction is constant

Theorem (Full reliability by protecting a constant fraction of the decoder)

@ For any fixed n, < n+ 1, ¢; converges a.s. to a random variable ex, € {0,1}.
® Rate loss: P(ecc =0)=(1—06)™(1—
——

mult. penalty BEC cap.
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Outline

® Classical algorithm/hardware co-design:

m Hardware implementation of successive cancellation list decoding of polar codes
m Successive cancellation flip decoding of polar codes & its hardware implementation

® Approximate computing:

m Throughput-oriented construction of polar codes
m Error-correction coding on faulty hardware

©® Communications hardware meets information theory and machine learning:

m Terabit/s LDPC hardware decoders via quantized message passing
m Neural networks for self-interference cancellation in full-duplex radios
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Min-Sum Decoding of LDPC Codes

® | DPC codes are linear block codes with a
sparse parity-check matrix
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Min-Sum Decoding of LDPC Codes

® | DPC codes are linear block codes with a
sparse parity-check matrix v v w3 Vg U5 v U7

® An LDPC code can be represented as a Tanner
graph with:
m Variable nodes (VNs)

m Check nodes (CNs) . . . .
1 2 3 4

Min-Sum Decoding

Variable-to-check messages: (L, ,u) =L+ Z Wi,
Check-to-variable messages: ¢'C(;4) = Hsign Wi min | pl.

J
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Finite-Alphabet Message Passing Decoding

® In hardware implementations of MS decoding, uniform quantization is used.

I)
£COLE POLYTECHNIQUI 23/30

FEDERALE DE LAUSANNE




Hardware Polar Decoders Approximate ECC Decoding 1T and ML meet Hardware Conclusions

Finite-Alphabet Message Passing Decoding

® In hardware implementations of MS decoding, uniform quantization is used.

Conventional Message-Passing
Decoding Algorithm — Quantization

® Efficient arithmetic circuits, but suboptimal error-correcting performance.

P

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

23/30



Hardware Polar Decoders Approximate ECC Decoding 1T and ML meet Hardware Conclusions

Finite-Alphabet Message Passing Decoding

® In hardware implementations of MS decoding, uniform quantization is used.

Conventional Message-Passing
Decoding Algorithm — Quantization

® Efficient arithmetic circuits, but suboptimal error-correcting performance.

Finite-Alphabet Message-Passing
Quantization — Decoding Algorithm

® Updates are implemented as optimized look-up tables (LUTs).
® Potential for significant bit-width reduction and performance improvement.

@ R. Ghanaatian, A. Balatsoukas-Stimming, C. Miller, M. Meidlinger, G. Matz, A. Teman, and A. Burg, "A 588 Gbps LDPC decoder based on
finite-alphabet message passing," IEEE Transactions on Very Large Scale Integration Systems, Feb. 2018

9 M. Meidlinger, A. Balatsoukas-Stimming, A. Burg, and G. Matz, "Quantized message passing for LDPC codes," in Asilomar Conference on
Signals, Systems, and Computers, May 2015

e A. Balatsoukas-Stimming, M. Meidlinger, R. Ghanaatian, G. Matz, and A. Burg, "A fully-unrolled LDPC decoder based on quantized message
passing," in IEEE International Workshop on Signal Processing Systems (SiPS), Oct. 2015
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Look-Up Table Design
® QOur method is based on an information theoretic criterion.

LUT Design Principle

Local maximization of mutual information between messages and codeword bits.
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Look-Up Table Design
® QOur method is based on an information theoretic criterion.

LUT Design Principle

Local maximization of mutual information between messages and codeword bits.

® |EEE 802.3an LDPC code (d, = 6, dc = 32, N = 2048, Inax = 5)

100 |-

108 ,‘_,_ Floating-point, I =5
T T T T

ol

3 3.5 4 4.5
Ey/ Ny [dB]

5.5 6
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Look-Up Table Design
® QOur method is based on an information theoretic criterion.
LUT Design Principle

Local maximization of mutual information between messages and codeword bits.

® |EEE 802.3an LDPC code (d, = 6, dc = 32, N = 2048, Inax = 5)

100 i

102} |

& 104 |

1076 - |
—— Fixed-point, (Qmsg = 5)

10~8 || —— Floating-point, I =5 )

T - . :

T T
3 3.5 4 4.5 5 5.5 6
Ey/ Ny [dB]
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Look-Up Table Design

® QOur method is based on an information theoretic criterion.

LUT Design Principle

Local maximization of mutual information between messages and codeword bits.

® |EEE 802.3an LDPC code (d, = 6, dc = 32, N = 2048, Inax = 5)

100 |-

1070 1 g Fixed-point, (Qmsg = 4)
—— Fixed-point, (Qmsg = 5)
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Look-Up Table Design
® QOur method is based on an information theoretic criterion.

LUT Design Principle

Local maximization of mutual information between messages and codeword bits.

® |EEE 802.3an LDPC code (d, = 6, dc = 32, N = 2048, Inax = 5)

100 |-

Niss LUT-based, (Qmsg = 3)
107" I'| &~ Fixed-point, (Qmsg =4)
—— Fixed-point, (Qmsg = 5)
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Look-Up Table Design
® QOur method is based on an information theoretic criterion.

LUT Design Principle

Local maximization of mutual information between messages and codeword bits.

® |EEE 802.3an LDPC code (d, = 6, dc = 32, N = 2048, Inax = 5)

100 |-

40% message bit-width
reduction with identical FER
performance.

| |[——LUT-based, (Qmsg = 3)
107° 1 —a— Fixed-point, ((Qmsg = 4)

—— Fixed-point, (Qmsg = 5)
10~8 || —— Floating-point, I =5

T T
3 3.5 4 4.5 5 5.5 6
Ey/ Ny [dB]
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Fully Unrolled LDPC Decoder Hardware Architecture

Check Node Variable Node Check Node Decision Node
Stage Stage Stage Stage

B oo wrr |

NN | . Decoded

Input
Codeword

LLRs

VN-CN

Routing

Ronting,

P —

® One CN stage and one VN stage per iteration: 2/h.x pipeline stages.
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Fully Unrolled LDPC Decoder Hardware Architecture

Check Node Variable Node Check Node Decision Node
Stage Stage Stage Stage

Input

Decoded
LLRs | .

Codeword

® One CN stage and one VN stage per iteration: 2/h.x pipeline stages.

| Quant. MS  LUT-based

Area (mm?) 35.63 33.79 —5%
Throughput (Gbps) 1014 1665 +64%
Area Eff. (Gbps/mm?) 28.46 49.27 +73%

P
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Bi-directional Wireless Communications

Time-division duplexing (TDD)

Wasted time resources: switching interval

Frequency-division duplexing (FDD)

Wasted frequency resources: guard bands

In-Band Full-duplex (IBFD)
Up to twice the throughput wrt TDD & FDD!
No additional bandwidth

No wasted time or frequency resources

ICH
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Bi-directional Wireless Communications

FREQ
Time-division duplexing (TDD)
Wasted time resources: switching interval
TIME
FREQ -

Frequency-division duplexing (FDD)

Wasted frequency resources: guard bands

TIME

FREQ
In-Band Full-duplex (IBFD)
Up to twice the throughput wrt TDD & FDD!
No additional bandwidth

No wasted time or frequency resources

Fundamental Challenge: Self-interference is much stronger than the desired signal!

ICH
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Why is Cancellation Challenging?

® In principle, cancellation is easy since digital transmitted signal is known!

)
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Why is Cancellation Challenging?

® In principle, cancellation is easy since digital transmitted signal is known!
® |In practice, the digital signal does not tell the whole story!
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Why is Cancellation Challenging?

® In principle, cancellation is easy since digital transmitted signal is known!
® |In practice, the digital signal does not tell the whole story!
m Analog components introduce non-linearities that make digital cancellation difficult
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Why is Cancellation Challenging?

® In principle, cancellation is easy since digital transmitted signal is known!
® |In practice, the digital signal does not tell the whole story!
m Analog components introduce non-linearities that make digital cancellation difficult

® Consider a state-of-the-art non-linear cancellation model:
p M+L—1

ZZ > hpg(m)a(n = m)'a"(n—m)""

1 = =
godc,] 9=0 m=0 basis functions

y(n)

Example

For P =7 and M + L = 13 memory taps — 20 basis functions and 260 parameters!

@ D. Korpi, L. Anttila, and M. Valkama, “Nonli If-interference Il
Journal on Wireless Communications and Networking, Feb. 2017

ion in MIMO full-duplex transceivers under crosstalk,” EURASIP

(|
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Why is Cancellation Challenging?

® In principle, cancellation is easy since digital transmitted signal is known!
® |In practice, the digital signal does not tell the whole story!
m Analog components introduce non-linearities that make digital cancellation difficult

® Consider a state-of-the-art non-linear cancellation model:
p M+L—1

y(n):zz > hpg(m)a(n = m)'a"(n—m)""

1 = =
godé 9=0 m=0 basis functions

Example
For P =7 and M + L = 13 memory taps — 20 basis functions and 260 parameters!

Idea

Why not use a neural network that extracts structure from training data?

0 D. Korpi, L. Anttila, and M. Valkama, “Nonli If-interference llation in MIMO full-duplex transceivers under crosstalk,” EURASIP
Journal on Wireless Communications and Networking, Feb. 2017

9 A. Balatsoukas-Stimming, “Non-linear digital self-interference cancellation for in-band full-duplex radios using neural networks,” IEEE
International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Jun. 2018 (accepted)
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Self-Interference Cancellation Using Neural Networks
® Decompose self-interference signal into linear and non-linear part

y(n) = Yin(n) + ya(n)
— —~—

easy! hard!

I)
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Self-Interference Cancellation Using Neural Networks

® Decompose self-interference signal into linear and non-linear part

y(n) = yin(n) + ya(n)
S~ M~
easy! hard!

® Two-step cancellation:

@ Use standard linear digital cancellation: §ii,(n) = ZM+L71 R

0 1,1(m)z(n — m)
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Self-Interference Cancellation Using Neural Networks
® Decompose self-interference signal into linear and non-linear part
y(n) = yin(n) + ya(n)
S~ M~
easy! hard!

® Two-step cancellation:
M+L—1 ¢

@ Use standard linear digital cancellation: §ii,(n) = Zm:O h1,1(m)z(n — m)
® Train a neural network to reproduce and cancel yn(n) = y(n) — fin(n)

Input layer Hidden layer Output layer
R{z(n)} —
S{z(n)} —
R{z(n-1)} —
${z(n-1)} —
R{z(n—2)} —

${z(n—2)} —

.4) §R{@nl(n)}
.4) S{é\/nl(n)}
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Experimental Cancellation Results

® 10 MHz OFDM signal, 56 dB passive cancellation, M + L = 13 taps
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Experimental Cancellation Results

® 10 MHz OFDM signal, 56 dB passive cancellation, M + L = 13 taps

sax=s NF (—90.8 dBm)
S| (—46.0 dBm)
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Experimental Cancellation Results

® 10 MHz OFDM signal, 56 dB passive cancellation, M + L = 13 taps

—110

—120

—130 s=aas NF (—90.8 dBm)
S| (—46.0 dBm)

e Lin. (—80.6 dBm)

—140

—150

—160

AT PP P IS AN -‘"'.-,-a‘,\c‘-',.--« A
_170 | | ! | | \ \ \
—-10 -8 —6 —4 -2 0 2 4 6 8 10

0
(33

Power Spectral Density (dBm/Hz)

Frequency (MHz)

P

£COLE POLYTECHNIQUE 29/30

FEDERALE DE LAUSANNE




Hardware Polar Decoders  Approximate ECC Decoding IT and ML meet Hardware Conclusions

Experimental Cancellation Results

® 10 MHz OFDM signal, 56 dB passive cancellation, M + L = 13 taps
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Experimental Cancellation Results

® 10 MHz OFDM signal, 56 dB passive cancellation, M + L = 13 taps

~ —110 T T T T T T T T

I "N

~

£ —120 |

o

Z

> —130 | saaxs NF (—90.8 dBm)
2 — S| (—46.0 dBm)
8 —140 | :

- e Lin. (—80.6 dBm)
C

£ —150 s Poly. (—87.5 dBm)
(7]

2 ——— NN (—87.7 dBm
T —160 |, = | ¢ )
§ Adiniia, DL AL b 1 oot

2 -170

-10 -8 -6 —4 -2 0 2 4 6 8 10

Frequency (MHz)

I)
£COLE POLYTECHNIQUI 29/30

FEDERALE DE LAUSANNE




Hardware Polar Decoders  Approximate ECC Decoding IT and ML meet Hardware Conclusions

Experimental Cancellation Results

® 10 MHz OFDM signal, 56 dB passive cancellation, M + L = 13 taps
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Multiplications | 741 476 36%
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Experimental Cancellation Results

® 10 MHz OFDM signal, 56 dB passive cancellation, M + L = 13 taps

~ —110 e e e e  E—
I A
~
E —120 |-
o
Z
> —130 [ =xsxs NF (—90.8 dBm)
2 S| (—46.0 dBm)
& —140 |- ;
— e Lin. (—80.6 dBm)
C
£ —150 e Poly. (—87.5 dBm)
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o m——— NN (—87.7 dBm
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& _170 M 17 [ L i
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Frequency (MHz)

‘ Poly. NN Improvement
Additions 492 493 0%
Multiplications | 741 476 36%

Identical cancellation performance with lower complexity!
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Conclusions

Requirements.
Technology Benefits

DAY

Time
Process Node

90 nm 28nm

® A combination of approaches is necessary to maintain progress in the
post-happy-scaling era, including:
@ Classical algorithm/hardware co-design
® Approximate computing
©® Tools from other disciplines
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Conclusions
B

WS/

Requirements.
Technology Benefits

“Bappy Sealing”  TODAY
Era R

90 nm 28nm

Time
Process Node

® A combination of approaches is necessary to maintain progress in the
post-happy-scaling era, including:
@ Classical algorithm/hardware co-design
® Approximate computing
©® Tools from other disciplines

The end of the happy scaling era creates new
challenges and opportunities for innovation!
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